Metamath Proof Explorer


Theorem 4atexlempns

Description: Lemma for 4atexlem7 . (Contributed by NM, 23-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) )
4thatlemslps.l = ( le ‘ 𝐾 )
4thatlemslps.j = ( join ‘ 𝐾 )
4thatlemslps.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion 4atexlempns ( 𝜑𝑃𝑆 )

Proof

Step Hyp Ref Expression
1 4thatlem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) )
2 4thatlemslps.l = ( le ‘ 𝐾 )
3 4thatlemslps.j = ( join ‘ 𝐾 )
4 4thatlemslps.a 𝐴 = ( Atoms ‘ 𝐾 )
5 1 4atexlemk ( 𝜑𝐾 ∈ HL )
6 1 4atexlemp ( 𝜑𝑃𝐴 )
7 1 4atexlemq ( 𝜑𝑄𝐴 )
8 1 4atexlems ( 𝜑𝑆𝐴 )
9 1 4atexlemnslpq ( 𝜑 → ¬ 𝑆 ( 𝑃 𝑄 ) )
10 2 3 4 4atlem0be ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑆𝐴 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → 𝑃𝑆 )
11 5 6 7 8 9 10 syl131anc ( 𝜑𝑃𝑆 )