| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							4thatlem.ph | 
							⊢ ( 𝜑  ↔  ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑆  ∈  𝐴  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  ( 𝑇  ∈  𝐴  ∧  ( 𝑈  ∨  𝑇 )  =  ( 𝑉  ∨  𝑇 ) ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							4thatlempqb.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							4thatlempqb.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								1
							 | 
							4atexlemk | 
							⊢ ( 𝜑  →  𝐾  ∈  HL )  | 
						
						
							| 5 | 
							
								1
							 | 
							4atexlemq | 
							⊢ ( 𝜑  →  𝑄  ∈  𝐴 )  | 
						
						
							| 6 | 
							
								1
							 | 
							4atexlemt | 
							⊢ ( 𝜑  →  𝑇  ∈  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 8 | 
							
								7 2 3
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑇  ∈  𝐴 )  →  ( 𝑄  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 9 | 
							
								4 5 6 8
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝑄  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 ) )  |