Step |
Hyp |
Ref |
Expression |
1 |
|
4thatlem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
2 |
|
4thatlemslps.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
4thatlemslps.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
4thatlemslps.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
4thatlemsw.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
6 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
1 6
|
sylbi |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
1
|
4atexlempw |
⊢ ( 𝜑 → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
9 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
10 |
|
3simpa |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
11 |
9 10
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
12 |
1 11
|
sylbi |
⊢ ( 𝜑 → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
13 |
7 8 12
|
3jca |
⊢ ( 𝜑 → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ) |
14 |
1
|
4atexlems |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
15 |
1
|
4atexlemq |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
16 |
|
simp13r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑄 ≤ 𝑊 ) |
17 |
1 16
|
sylbi |
⊢ ( 𝜑 → ¬ 𝑄 ≤ 𝑊 ) |
18 |
1
|
4atexlemkc |
⊢ ( 𝜑 → 𝐾 ∈ CvLat ) |
19 |
1
|
4atexlemp |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
20 |
12
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
21 |
1
|
4atexlempnq |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
22 |
|
simp223 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
23 |
1 22
|
sylbi |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
24 |
4 3
|
cvlsupr7 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑅 ∨ 𝑄 ) ) |
25 |
18 19 15 20 21 23 24
|
syl132anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) = ( 𝑅 ∨ 𝑄 ) ) |
26 |
15 17 25
|
3jca |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑄 ) = ( 𝑅 ∨ 𝑄 ) ) ) |
27 |
1
|
4atexlemt |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
28 |
4 3
|
cvlsupr8 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑃 ∨ 𝑅 ) ) |
29 |
18 19 15 20 21 23 28
|
syl132anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) = ( 𝑃 ∨ 𝑅 ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) |
31 |
5 30
|
eqtrid |
⊢ ( 𝜑 → 𝑈 = ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) |
32 |
31
|
oveq1d |
⊢ ( 𝜑 → ( 𝑈 ∨ 𝑇 ) = ( ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ∨ 𝑇 ) ) |
33 |
1
|
4atexlemutvt |
⊢ ( 𝜑 → ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) |
34 |
32 33
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) |
35 |
27 34
|
jca |
⊢ ( 𝜑 → ( 𝑇 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) |
36 |
14 26 35
|
3jca |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝐴 ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑄 ) = ( 𝑅 ∨ 𝑄 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ) |
37 |
4 3
|
cvlsupr5 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝑅 ≠ 𝑃 ) |
38 |
37
|
necomd |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ≠ 𝑅 ) |
39 |
18 19 15 20 21 23 38
|
syl132anc |
⊢ ( 𝜑 → 𝑃 ≠ 𝑅 ) |
40 |
1
|
4atexlemnslpq |
⊢ ( 𝜑 → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
41 |
29
|
eqcomd |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑅 ) = ( 𝑃 ∨ 𝑄 ) ) |
42 |
41
|
breq2d |
⊢ ( 𝜑 → ( 𝑆 ≤ ( 𝑃 ∨ 𝑅 ) ↔ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
43 |
40 42
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑅 ) ) |
44 |
39 43
|
jca |
⊢ ( 𝜑 → ( 𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑅 ) ) ) |
45 |
13 36 44
|
3jca |
⊢ ( 𝜑 → ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑄 ) = ( 𝑅 ∨ 𝑄 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑅 ) ) ) ) |