Step |
Hyp |
Ref |
Expression |
1 |
|
4thatlem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
2 |
|
4thatlem0.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
4thatlem0.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
4thatlem0.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
4thatlem0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
4thatlem0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
4thatlem0.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
4thatlem0.v |
⊢ 𝑉 = ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
10 |
1
|
4atexlemkl |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
11 |
1
|
4atexlemt |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
12 |
9 5
|
atbase |
⊢ ( 𝑇 ∈ 𝐴 → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
14 |
1
|
4atexlemk |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
15 |
1 2 3 4 5 6 7
|
4atexlemu |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
16 |
1 2 3 4 5 6 7 8
|
4atexlemv |
⊢ ( 𝜑 → 𝑉 ∈ 𝐴 ) |
17 |
9 3 5
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( 𝑈 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
14 15 16 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
1 6
|
4atexlemwb |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
20 |
1
|
4atexlemkc |
⊢ ( 𝜑 → 𝐾 ∈ CvLat ) |
21 |
1 2 3 4 5 6 7 8
|
4atexlemunv |
⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) |
22 |
1
|
4atexlemutvt |
⊢ ( 𝜑 → ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) |
23 |
5 2 3
|
cvlsupr4 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑈 ≠ 𝑉 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) → 𝑇 ≤ ( 𝑈 ∨ 𝑉 ) ) |
24 |
20 15 16 11 21 22 23
|
syl132anc |
⊢ ( 𝜑 → 𝑇 ≤ ( 𝑈 ∨ 𝑉 ) ) |
25 |
1
|
4atexlemp |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
26 |
1
|
4atexlemq |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
27 |
9 3 5
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
14 25 26 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
9 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) |
30 |
10 28 19 29
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) |
31 |
7 30
|
eqbrtrid |
⊢ ( 𝜑 → 𝑈 ≤ 𝑊 ) |
32 |
1 3 5
|
4atexlempsb |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
33 |
9 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ≤ 𝑊 ) |
34 |
10 32 19 33
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ≤ 𝑊 ) |
35 |
8 34
|
eqbrtrid |
⊢ ( 𝜑 → 𝑉 ≤ 𝑊 ) |
36 |
9 5
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
37 |
15 36
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
38 |
9 5
|
atbase |
⊢ ( 𝑉 ∈ 𝐴 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
39 |
16 38
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
40 |
9 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑈 ≤ 𝑊 ∧ 𝑉 ≤ 𝑊 ) ↔ ( 𝑈 ∨ 𝑉 ) ≤ 𝑊 ) ) |
41 |
10 37 39 19 40
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑈 ≤ 𝑊 ∧ 𝑉 ≤ 𝑊 ) ↔ ( 𝑈 ∨ 𝑉 ) ≤ 𝑊 ) ) |
42 |
31 35 41
|
mpbi2and |
⊢ ( 𝜑 → ( 𝑈 ∨ 𝑉 ) ≤ 𝑊 ) |
43 |
9 2 10 13 18 19 24 42
|
lattrd |
⊢ ( 𝜑 → 𝑇 ≤ 𝑊 ) |