Metamath Proof Explorer


Theorem 4atexlemu

Description: Lemma for 4atexlem7 . (Contributed by NM, 23-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) )
4thatlem0.l = ( le ‘ 𝐾 )
4thatlem0.j = ( join ‘ 𝐾 )
4thatlem0.m = ( meet ‘ 𝐾 )
4thatlem0.a 𝐴 = ( Atoms ‘ 𝐾 )
4thatlem0.h 𝐻 = ( LHyp ‘ 𝐾 )
4thatlem0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
Assertion 4atexlemu ( 𝜑𝑈𝐴 )

Proof

Step Hyp Ref Expression
1 4thatlem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) )
2 4thatlem0.l = ( le ‘ 𝐾 )
3 4thatlem0.j = ( join ‘ 𝐾 )
4 4thatlem0.m = ( meet ‘ 𝐾 )
5 4thatlem0.a 𝐴 = ( Atoms ‘ 𝐾 )
6 4thatlem0.h 𝐻 = ( LHyp ‘ 𝐾 )
7 4thatlem0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 1 4atexlemk ( 𝜑𝐾 ∈ HL )
9 1 4atexlemw ( 𝜑𝑊𝐻 )
10 1 4atexlempw ( 𝜑 → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
11 1 4atexlemq ( 𝜑𝑄𝐴 )
12 1 4atexlempnq ( 𝜑𝑃𝑄 )
13 2 3 4 5 6 7 lhpat2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑃𝑄 ) ) → 𝑈𝐴 )
14 8 9 10 11 12 13 syl212anc ( 𝜑𝑈𝐴 )