| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							4thatlem.ph | 
							⊢ ( 𝜑  ↔  ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑆  ∈  𝐴  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  ( 𝑇  ∈  𝐴  ∧  ( 𝑈  ∨  𝑇 )  =  ( 𝑉  ∨  𝑇 ) ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							4thatlem0.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							4thatlem0.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							4thatlem0.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							4thatlem0.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							4thatlem0.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							4thatlem0.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							4thatlem0.v | 
							⊢ 𝑉  =  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  | 
						
						
							| 9 | 
							
								1
							 | 
							4atexlemnslpq | 
							⊢ ( 𝜑  →  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 10 | 
							
								1
							 | 
							4atexlemk | 
							⊢ ( 𝜑  →  𝐾  ∈  HL )  | 
						
						
							| 11 | 
							
								1
							 | 
							4atexlemp | 
							⊢ ( 𝜑  →  𝑃  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								1
							 | 
							4atexlems | 
							⊢ ( 𝜑  →  𝑆  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								2 3 5
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  →  𝑆  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 14 | 
							
								10 11 12 13
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  𝑆  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑈  =  𝑉 )  →  𝑆  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 16 | 
							
								1
							 | 
							4atexlemkl | 
							⊢ ( 𝜑  →  𝐾  ∈  Lat )  | 
						
						
							| 17 | 
							
								1 3 5
							 | 
							4atexlempsb | 
							⊢ ( 𝜑  →  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 18 | 
							
								1 6
							 | 
							4atexlemwb | 
							⊢ ( 𝜑  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 20 | 
							
								19 2 4
							 | 
							latmle1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 21 | 
							
								16 17 18 20
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 22 | 
							
								8 21
							 | 
							eqbrtrid | 
							⊢ ( 𝜑  →  𝑉  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 23 | 
							
								1
							 | 
							4atexlemkc | 
							⊢ ( 𝜑  →  𝐾  ∈  CvLat )  | 
						
						
							| 24 | 
							
								1 2 3 4 5 6 7 8
							 | 
							4atexlemv | 
							⊢ ( 𝜑  →  𝑉  ∈  𝐴 )  | 
						
						
							| 25 | 
							
								19 2 4
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 26 | 
							
								16 17 18 25
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 27 | 
							
								8 26
							 | 
							eqbrtrid | 
							⊢ ( 𝜑  →  𝑉  ≤  𝑊 )  | 
						
						
							| 28 | 
							
								1
							 | 
							4atexlempw | 
							⊢ ( 𝜑  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							simprd | 
							⊢ ( 𝜑  →  ¬  𝑃  ≤  𝑊 )  | 
						
						
							| 30 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( 𝑉  ≤  𝑊  ∧  ¬  𝑃  ≤  𝑊 )  →  𝑉  ≠  𝑃 )  | 
						
						
							| 31 | 
							
								27 29 30
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝑉  ≠  𝑃 )  | 
						
						
							| 32 | 
							
								2 3 5
							 | 
							cvlatexchb1 | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑉  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  ∧  𝑉  ≠  𝑃 )  →  ( 𝑉  ≤  ( 𝑃  ∨  𝑆 )  ↔  ( 𝑃  ∨  𝑉 )  =  ( 𝑃  ∨  𝑆 ) ) )  | 
						
						
							| 33 | 
							
								23 24 12 11 31 32
							 | 
							syl131anc | 
							⊢ ( 𝜑  →  ( 𝑉  ≤  ( 𝑃  ∨  𝑆 )  ↔  ( 𝑃  ∨  𝑉 )  =  ( 𝑃  ∨  𝑆 ) ) )  | 
						
						
							| 34 | 
							
								22 33
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝑃  ∨  𝑉 )  =  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑈  =  𝑉 )  →  ( 𝑃  ∨  𝑉 )  =  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑈  =  𝑉  →  ( 𝑃  ∨  𝑈 )  =  ( 𝑃  ∨  𝑉 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							eqcomd | 
							⊢ ( 𝑈  =  𝑉  →  ( 𝑃  ∨  𝑉 )  =  ( 𝑃  ∨  𝑈 ) )  | 
						
						
							| 38 | 
							
								1
							 | 
							4atexlemq | 
							⊢ ( 𝜑  →  𝑄  ∈  𝐴 )  | 
						
						
							| 39 | 
							
								19 3 5
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 40 | 
							
								10 11 38 39
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 41 | 
							
								19 2 4
							 | 
							latmle1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 42 | 
							
								16 40 18 41
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 43 | 
							
								7 42
							 | 
							eqbrtrid | 
							⊢ ( 𝜑  →  𝑈  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 44 | 
							
								1 2 3 4 5 6 7
							 | 
							4atexlemu | 
							⊢ ( 𝜑  →  𝑈  ∈  𝐴 )  | 
						
						
							| 45 | 
							
								19 2 4
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 46 | 
							
								16 40 18 45
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 47 | 
							
								7 46
							 | 
							eqbrtrid | 
							⊢ ( 𝜑  →  𝑈  ≤  𝑊 )  | 
						
						
							| 48 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( 𝑈  ≤  𝑊  ∧  ¬  𝑃  ≤  𝑊 )  →  𝑈  ≠  𝑃 )  | 
						
						
							| 49 | 
							
								47 29 48
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝑈  ≠  𝑃 )  | 
						
						
							| 50 | 
							
								2 3 5
							 | 
							cvlatexchb1 | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑈  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  ∧  𝑈  ≠  𝑃 )  →  ( 𝑈  ≤  ( 𝑃  ∨  𝑄 )  ↔  ( 𝑃  ∨  𝑈 )  =  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 51 | 
							
								23 44 38 11 49 50
							 | 
							syl131anc | 
							⊢ ( 𝜑  →  ( 𝑈  ≤  ( 𝑃  ∨  𝑄 )  ↔  ( 𝑃  ∨  𝑈 )  =  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 52 | 
							
								43 51
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝑃  ∨  𝑈 )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 53 | 
							
								37 52
							 | 
							sylan9eqr | 
							⊢ ( ( 𝜑  ∧  𝑈  =  𝑉 )  →  ( 𝑃  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 54 | 
							
								35 53
							 | 
							eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝑈  =  𝑉 )  →  ( 𝑃  ∨  𝑆 )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 55 | 
							
								15 54
							 | 
							breqtrd | 
							⊢ ( ( 𝜑  ∧  𝑈  =  𝑉 )  →  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑈  =  𝑉  →  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							necon3bd | 
							⊢ ( 𝜑  →  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  →  𝑈  ≠  𝑉 ) )  | 
						
						
							| 58 | 
							
								9 57
							 | 
							mpd | 
							⊢ ( 𝜑  →  𝑈  ≠  𝑉 )  |