Description: Lemma for 4atexlem7 . (Contributed by NM, 23-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 4thatlem.ph | ⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) | |
4thatlemmwb.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
Assertion | 4atexlemwb | ⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4thatlem.ph | ⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ( 𝑈 ∨ 𝑇 ) = ( 𝑉 ∨ 𝑇 ) ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) | |
2 | 4thatlemmwb.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
3 | 1 | 4atexlemw | ⊢ ( 𝜑 → 𝑊 ∈ 𝐻 ) |
4 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
5 | 4 2 | lhpbase | ⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
6 | 3 5 | syl | ⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |