Metamath Proof Explorer


Theorem 4atlem0be

Description: Lemma for 4at . (Contributed by NM, 10-Jul-2012)

Ref Expression
Hypotheses 4at.l = ( le ‘ 𝐾 )
4at.j = ( join ‘ 𝐾 )
4at.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion 4atlem0be ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑃𝑅 )

Proof

Step Hyp Ref Expression
1 4at.l = ( le ‘ 𝐾 )
2 4at.j = ( join ‘ 𝐾 )
3 4at.a 𝐴 = ( Atoms ‘ 𝐾 )
4 simp1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝐾 ∈ HL )
5 simp23 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑅𝐴 )
6 simp21 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑃𝐴 )
7 simp22 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑄𝐴 )
8 simp3 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ¬ 𝑅 ( 𝑃 𝑄 ) )
9 1 2 3 atnlej1 ( ( 𝐾 ∈ HL ∧ ( 𝑅𝐴𝑃𝐴𝑄𝐴 ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑅𝑃 )
10 9 necomd ( ( 𝐾 ∈ HL ∧ ( 𝑅𝐴𝑃𝐴𝑄𝐴 ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑃𝑅 )
11 4 5 6 7 8 10 syl131anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑃𝑅 )