| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4at.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
4at.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
4at.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝐾 ∈ HL ) |
| 5 |
4
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝐾 ∈ Lat ) |
| 6 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑅 ∈ 𝐴 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 8 |
7 3
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 9 |
6 8
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 10 |
|
simp21r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑆 ∈ 𝐴 ) |
| 11 |
7 3
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 13 |
7 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 15 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑉 ∈ 𝐴 ) |
| 16 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑊 ∈ 𝐴 ) |
| 17 |
7 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑉 ∨ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 18 |
4 15 16 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝑉 ∨ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
7 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑉 ∨ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
5 14 18 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
7 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ↔ ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
| 22 |
5 9 12 20 21
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ↔ ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
| 23 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
| 24 |
6 10 15
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) |
| 25 |
24
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) |
| 26 |
16
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑊 ∈ 𝐴 ) |
| 27 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ) |
| 28 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
| 29 |
28
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
| 30 |
26 27 29
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) |
| 31 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
| 32 |
1 2 3
|
4atlem10b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
| 33 |
23 25 30 31 32
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
| 34 |
33
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) → ( ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) |
| 35 |
2 3
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑆 ) ) |
| 36 |
4 10 6 35
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝑆 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑆 ) ) |
| 37 |
36
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑆 ∨ 𝑅 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) ) |
| 38 |
37
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑆 ∨ 𝑅 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) ) |
| 39 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
| 40 |
10 6 15
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) |
| 41 |
40
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) |
| 42 |
16
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑊 ∈ 𝐴 ) |
| 43 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ) |
| 44 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑃 ∈ 𝐴 ) |
| 45 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑄 ∈ 𝐴 ) |
| 46 |
44 45
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
| 47 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) |
| 48 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 49 |
1 2 3
|
4atlem0a |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ) |
| 50 |
4 46 47 48 28 49
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ) |
| 51 |
50
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ) |
| 52 |
42 43 51
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ) ) |
| 53 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
| 54 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
| 55 |
53 54
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
| 56 |
55
|
3adant2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
| 57 |
1 2 3
|
4atlem10b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ∧ ( 𝑊 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ) ) ∧ ( 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑆 ∨ 𝑅 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
| 58 |
39 41 52 56 57
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑆 ∨ 𝑅 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
| 59 |
38 58
|
eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∧ ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
| 60 |
59
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) → ( ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) ) |
| 61 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
| 62 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) |
| 63 |
1 2 3
|
4atlem3b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∨ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ) ) |
| 64 |
61 6 10 16 62 63
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ∨ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑊 ) ) ) |
| 65 |
34 60 64
|
mpjaod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
| 66 |
22 65
|
sylbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |