Step |
Hyp |
Ref |
Expression |
1 |
|
4at.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
4at.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
4at.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
5 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) |
6 |
|
simp132 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑉 ∈ 𝐴 ) |
7 |
|
simp133 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑊 ∈ 𝐴 ) |
8 |
5 6 7
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) |
9 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) |
10 |
4 8 9
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) ) |
11 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
12 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
13 |
|
simp111 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝐾 ∈ HL ) |
14 |
13
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝐾 ∈ Lat ) |
15 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑅 ∈ 𝐴 ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
17 |
16 3
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
18 |
15 17
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
19 |
|
simp12r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑆 ∈ 𝐴 ) |
20 |
16 3
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
22 |
|
simp112 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑃 ∈ 𝐴 ) |
23 |
|
simp131 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑈 ∈ 𝐴 ) |
24 |
16 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
13 22 23 24
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
16 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑉 ∨ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
27 |
13 6 7 26
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑉 ∨ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
16 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑉 ∨ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
14 25 27 28
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
30 |
16 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ↔ ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
31 |
14 18 21 29 30
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ↔ ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
32 |
11 12 31
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
33 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
34 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) |
35 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) |
36 |
1 2 3
|
4atlem11a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) → ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
37 |
4 34 35 36
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
38 |
33 37
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
39 |
32 38
|
breqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
40 |
1 2 3
|
4atlem10 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ( 𝑅 ∨ 𝑆 ) ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) |
41 |
10 39 40
|
sylc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |
42 |
41 38
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ∧ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑉 ) ∨ 𝑊 ) ) ∧ ( 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ∧ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑈 ) ∨ ( 𝑉 ∨ 𝑊 ) ) ) |