Step |
Hyp |
Ref |
Expression |
1 |
|
4at.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
4at.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
4at.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
5 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑅 ∈ 𝐴 ) |
6 |
|
simpl2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑆 ∈ 𝐴 ) |
7 |
|
simpl12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑃 ∈ 𝐴 ) |
8 |
5 6 7
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ) |
9 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) |
10 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) |
11 |
1 2 3
|
4atlem3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ( ¬ 𝑃 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ∨ ( ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ) ) |
12 |
4 8 9 10 11
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ( ¬ 𝑃 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ∨ ( ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ) ) |
13 |
|
simpl11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝐾 ∈ HL ) |
14 |
13
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝐾 ∈ Lat ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
16 |
15 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
17 |
7 16
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
18 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑈 ∈ 𝐴 ) |
19 |
|
simpl3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑉 ∈ 𝐴 ) |
20 |
15 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( 𝑈 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
13 18 19 20
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( 𝑈 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
15 1 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑈 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) → 𝑃 ≤ ( 𝑃 ∨ ( 𝑈 ∨ 𝑉 ) ) ) |
23 |
14 17 21 22
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑃 ≤ ( 𝑃 ∨ ( 𝑈 ∨ 𝑉 ) ) ) |
24 |
15 3
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
25 |
18 24
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
26 |
15 3
|
atbase |
⊢ ( 𝑉 ∈ 𝐴 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
27 |
19 26
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
28 |
15 2
|
latjass |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) = ( 𝑃 ∨ ( 𝑈 ∨ 𝑉 ) ) ) |
29 |
14 17 25 27 28
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) = ( 𝑃 ∨ ( 𝑈 ∨ 𝑉 ) ) ) |
30 |
23 29
|
breqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → 𝑃 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) |
31 |
|
biortn |
⊢ ( 𝑃 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) → ( ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ↔ ( ¬ 𝑃 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ) ) |
32 |
30 31
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ↔ ( ¬ 𝑃 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ) ) |
33 |
32
|
orbi1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ( ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ( ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ) ↔ ( ( ¬ 𝑃 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ∨ ( ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ) ) ) |
34 |
12 33
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ( ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ) ) |
35 |
|
3orass |
⊢ ( ( ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ↔ ( ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ( ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ) ) |
36 |
34 35
|
sylibr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) ) → ( ¬ 𝑄 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑅 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ∨ ¬ 𝑆 ≤ ( ( 𝑃 ∨ 𝑈 ) ∨ 𝑉 ) ) ) |