Metamath Proof Explorer


Theorem 4atlem3b

Description: Lemma for 4at . Break inequality into 2 cases. (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l = ( le ‘ 𝐾 )
4at.j = ( join ‘ 𝐾 )
4at.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion 4atlem3b ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( ¬ 𝑅 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 4at.l = ( le ‘ 𝐾 )
2 4at.j = ( join ‘ 𝐾 )
3 4at.a 𝐴 = ( Atoms ‘ 𝐾 )
4 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) )
5 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝑅𝐴 )
6 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝑆𝐴 )
7 5 6 jca ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( 𝑅𝐴𝑆𝐴 ) )
8 simp13 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝑄𝐴 )
9 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝑉𝐴 )
10 8 9 jca ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( 𝑄𝐴𝑉𝐴 ) )
11 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) )
12 1 2 3 4atlem3a ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑄𝐴𝑉𝐴 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( ¬ 𝑄 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑅 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑉 ) ) )
13 4 7 10 11 12 syl31anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( ¬ 𝑄 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑅 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑉 ) ) )
14 3orass ( ( ¬ 𝑄 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑅 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑉 ) ) ↔ ( ¬ 𝑄 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ( ¬ 𝑅 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑉 ) ) ) )
15 13 14 sylib ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( ¬ 𝑄 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ( ¬ 𝑅 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑉 ) ) ) )
16 simp11 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝐾 ∈ HL )
17 16 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝐾 ∈ Lat )
18 simp12 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝑃𝐴 )
19 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
20 19 2 3 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑉𝐴 ) → ( 𝑃 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
21 16 18 9 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( 𝑃 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
22 19 3 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
23 8 22 syl ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
24 19 1 2 latlej2 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑉 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → 𝑄 ( ( 𝑃 𝑉 ) 𝑄 ) )
25 17 21 23 24 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝑄 ( ( 𝑃 𝑉 ) 𝑄 ) )
26 2 3 hlatj32 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑉𝐴𝑄𝐴 ) ) → ( ( 𝑃 𝑉 ) 𝑄 ) = ( ( 𝑃 𝑄 ) 𝑉 ) )
27 16 18 9 8 26 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( ( 𝑃 𝑉 ) 𝑄 ) = ( ( 𝑃 𝑄 ) 𝑉 ) )
28 25 27 breqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝑄 ( ( 𝑃 𝑄 ) 𝑉 ) )
29 biortn ( 𝑄 ( ( 𝑃 𝑄 ) 𝑉 ) → ( ( ¬ 𝑅 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑉 ) ) ↔ ( ¬ 𝑄 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ( ¬ 𝑅 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑉 ) ) ) ) )
30 28 29 syl ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( ( ¬ 𝑅 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑉 ) ) ↔ ( ¬ 𝑄 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ( ¬ 𝑅 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑉 ) ) ) ) )
31 15 30 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴𝑉𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( ¬ 𝑅 ( ( 𝑃 𝑄 ) 𝑉 ) ∨ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑉 ) ) )