Step |
Hyp |
Ref |
Expression |
1 |
|
4at.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
4at.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
4at.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
5 |
4
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
7 |
6 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
9 |
6 3
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
10 |
9
|
ad2antrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
11 |
6 3
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
12 |
11
|
ad2antll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
13 |
6 2
|
latj12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( 𝑅 ∨ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ) ) |
14 |
5 8 10 12 13
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑅 ∨ 𝑆 ) ) = ( 𝑅 ∨ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ) ) |