Metamath Proof Explorer


Theorem 4atlem4d

Description: Lemma for 4at . Frequently used associative law. (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l = ( le ‘ 𝐾 )
4at.j = ( join ‘ 𝐾 )
4at.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion 4atlem4d ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ) → ( ( 𝑃 𝑄 ) ( 𝑅 𝑆 ) ) = ( 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 4at.l = ( le ‘ 𝐾 )
2 4at.j = ( join ‘ 𝐾 )
3 4at.a 𝐴 = ( Atoms ‘ 𝐾 )
4 simpl1 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ) → 𝐾 ∈ HL )
5 4 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ) → 𝐾 ∈ Lat )
6 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
7 6 2 3 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
8 7 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
9 6 3 atbase ( 𝑅𝐴𝑅 ∈ ( Base ‘ 𝐾 ) )
10 9 ad2antrl ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) )
11 6 3 atbase ( 𝑆𝐴𝑆 ∈ ( Base ‘ 𝐾 ) )
12 11 ad2antll ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) )
13 6 2 latjass ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 𝑄 ) 𝑅 ) 𝑆 ) = ( ( 𝑃 𝑄 ) ( 𝑅 𝑆 ) ) )
14 5 8 10 12 13 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ) → ( ( ( 𝑃 𝑄 ) 𝑅 ) 𝑆 ) = ( ( 𝑃 𝑄 ) ( 𝑅 𝑆 ) ) )
15 6 2 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
16 5 8 10 15 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
17 6 2 latjcom ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 𝑄 ) 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑃 𝑄 ) 𝑅 ) 𝑆 ) = ( 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) )
18 5 16 12 17 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ) → ( ( ( 𝑃 𝑄 ) 𝑅 ) 𝑆 ) = ( 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) )
19 14 18 eqtr3d ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ) → ( ( 𝑃 𝑄 ) ( 𝑅 𝑆 ) ) = ( 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) )