Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
⊢ 0 ∈ ℤ |
2 |
|
4z |
⊢ 4 ∈ ℤ |
3 |
|
2z |
⊢ 2 ∈ ℤ |
4 |
1 2 3
|
3pm3.2i |
⊢ ( 0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ ) |
5 |
|
0le2 |
⊢ 0 ≤ 2 |
6 |
|
2re |
⊢ 2 ∈ ℝ |
7 |
|
4re |
⊢ 4 ∈ ℝ |
8 |
|
2lt4 |
⊢ 2 < 4 |
9 |
6 7 8
|
ltleii |
⊢ 2 ≤ 4 |
10 |
5 9
|
pm3.2i |
⊢ ( 0 ≤ 2 ∧ 2 ≤ 4 ) |
11 |
|
elfz4 |
⊢ ( ( ( 0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ( 0 ≤ 2 ∧ 2 ≤ 4 ) ) → 2 ∈ ( 0 ... 4 ) ) |
12 |
4 10 11
|
mp2an |
⊢ 2 ∈ ( 0 ... 4 ) |
13 |
|
bcval2 |
⊢ ( 2 ∈ ( 0 ... 4 ) → ( 4 C 2 ) = ( ( ! ‘ 4 ) / ( ( ! ‘ ( 4 − 2 ) ) · ( ! ‘ 2 ) ) ) ) |
14 |
12 13
|
ax-mp |
⊢ ( 4 C 2 ) = ( ( ! ‘ 4 ) / ( ( ! ‘ ( 4 − 2 ) ) · ( ! ‘ 2 ) ) ) |
15 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
16 |
|
facp1 |
⊢ ( 3 ∈ ℕ0 → ( ! ‘ ( 3 + 1 ) ) = ( ( ! ‘ 3 ) · ( 3 + 1 ) ) ) |
17 |
15 16
|
ax-mp |
⊢ ( ! ‘ ( 3 + 1 ) ) = ( ( ! ‘ 3 ) · ( 3 + 1 ) ) |
18 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
19 |
18
|
fveq2i |
⊢ ( ! ‘ 4 ) = ( ! ‘ ( 3 + 1 ) ) |
20 |
18
|
oveq2i |
⊢ ( ( ! ‘ 3 ) · 4 ) = ( ( ! ‘ 3 ) · ( 3 + 1 ) ) |
21 |
17 19 20
|
3eqtr4i |
⊢ ( ! ‘ 4 ) = ( ( ! ‘ 3 ) · 4 ) |
22 |
|
4cn |
⊢ 4 ∈ ℂ |
23 |
|
2cn |
⊢ 2 ∈ ℂ |
24 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
25 |
22 23 23 24
|
subaddrii |
⊢ ( 4 − 2 ) = 2 |
26 |
25
|
fveq2i |
⊢ ( ! ‘ ( 4 − 2 ) ) = ( ! ‘ 2 ) |
27 |
|
fac2 |
⊢ ( ! ‘ 2 ) = 2 |
28 |
26 27
|
eqtri |
⊢ ( ! ‘ ( 4 − 2 ) ) = 2 |
29 |
28 27
|
oveq12i |
⊢ ( ( ! ‘ ( 4 − 2 ) ) · ( ! ‘ 2 ) ) = ( 2 · 2 ) |
30 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
31 |
29 30
|
eqtri |
⊢ ( ( ! ‘ ( 4 − 2 ) ) · ( ! ‘ 2 ) ) = 4 |
32 |
21 31
|
oveq12i |
⊢ ( ( ! ‘ 4 ) / ( ( ! ‘ ( 4 − 2 ) ) · ( ! ‘ 2 ) ) ) = ( ( ( ! ‘ 3 ) · 4 ) / 4 ) |
33 |
|
faccl |
⊢ ( 3 ∈ ℕ0 → ( ! ‘ 3 ) ∈ ℕ ) |
34 |
15 33
|
ax-mp |
⊢ ( ! ‘ 3 ) ∈ ℕ |
35 |
34
|
nncni |
⊢ ( ! ‘ 3 ) ∈ ℂ |
36 |
|
4ne0 |
⊢ 4 ≠ 0 |
37 |
35 22 36
|
divcan4i |
⊢ ( ( ( ! ‘ 3 ) · 4 ) / 4 ) = ( ! ‘ 3 ) |
38 |
|
fac3 |
⊢ ( ! ‘ 3 ) = 6 |
39 |
37 38
|
eqtri |
⊢ ( ( ( ! ‘ 3 ) · 4 ) / 4 ) = 6 |
40 |
32 39
|
eqtri |
⊢ ( ( ! ‘ 4 ) / ( ( ! ‘ ( 4 − 2 ) ) · ( ! ‘ 2 ) ) ) = 6 |
41 |
14 40
|
eqtri |
⊢ ( 4 C 2 ) = 6 |