Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Mixed connectives
4cases
Metamath Proof Explorer
Description: Inference eliminating two antecedents from the four possible cases that
result from their true/false combinations. (Contributed by NM , 25-Oct-2003)
Ref
Expression
Hypotheses
4cases.1
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 )
4cases.2
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 )
4cases.3
⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) → 𝜒 )
4cases.4
⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 )
Assertion
4cases
⊢ 𝜒
Proof
Step
Hyp
Ref
Expression
1
4cases.1
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 )
2
4cases.2
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 )
3
4cases.3
⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) → 𝜒 )
4
4cases.4
⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 )
5
1 3
pm2.61ian
⊢ ( 𝜓 → 𝜒 )
6
2 4
pm2.61ian
⊢ ( ¬ 𝜓 → 𝜒 )
7
5 6
pm2.61i
⊢ 𝜒