Description: Deduction eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 19-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4casesdan.1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
| 4casesdan.2 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ ¬ 𝜒 ) ) → 𝜃 ) | ||
| 4casesdan.3 | ⊢ ( ( 𝜑 ∧ ( ¬ 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | ||
| 4casesdan.4 | ⊢ ( ( 𝜑 ∧ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → 𝜃 ) | ||
| Assertion | 4casesdan | ⊢ ( 𝜑 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4casesdan.1 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
| 2 | 4casesdan.2 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ ¬ 𝜒 ) ) → 𝜃 ) | |
| 3 | 4casesdan.3 | ⊢ ( ( 𝜑 ∧ ( ¬ 𝜓 ∧ 𝜒 ) ) → 𝜃 ) | |
| 4 | 4casesdan.4 | ⊢ ( ( 𝜑 ∧ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → 𝜃 ) | |
| 5 | 1 | expcom | ⊢ ( ( 𝜓 ∧ 𝜒 ) → ( 𝜑 → 𝜃 ) ) |
| 6 | 2 | expcom | ⊢ ( ( 𝜓 ∧ ¬ 𝜒 ) → ( 𝜑 → 𝜃 ) ) |
| 7 | 3 | expcom | ⊢ ( ( ¬ 𝜓 ∧ 𝜒 ) → ( 𝜑 → 𝜃 ) ) |
| 8 | 4 | expcom | ⊢ ( ( ¬ 𝜓 ∧ ¬ 𝜒 ) → ( 𝜑 → 𝜃 ) ) |
| 9 | 5 6 7 8 | 4cases | ⊢ ( 𝜑 → 𝜃 ) |