Metamath Proof Explorer


Theorem 4casesdan

Description: Deduction eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 19-Mar-2013)

Ref Expression
Hypotheses 4casesdan.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
4casesdan.2 ( ( 𝜑 ∧ ( 𝜓 ∧ ¬ 𝜒 ) ) → 𝜃 )
4casesdan.3 ( ( 𝜑 ∧ ( ¬ 𝜓𝜒 ) ) → 𝜃 )
4casesdan.4 ( ( 𝜑 ∧ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → 𝜃 )
Assertion 4casesdan ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 4casesdan.1 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
2 4casesdan.2 ( ( 𝜑 ∧ ( 𝜓 ∧ ¬ 𝜒 ) ) → 𝜃 )
3 4casesdan.3 ( ( 𝜑 ∧ ( ¬ 𝜓𝜒 ) ) → 𝜃 )
4 4casesdan.4 ( ( 𝜑 ∧ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → 𝜃 )
5 1 expcom ( ( 𝜓𝜒 ) → ( 𝜑𝜃 ) )
6 2 expcom ( ( 𝜓 ∧ ¬ 𝜒 ) → ( 𝜑𝜃 ) )
7 3 expcom ( ( ¬ 𝜓𝜒 ) → ( 𝜑𝜃 ) )
8 4 expcom ( ( ¬ 𝜓 ∧ ¬ 𝜒 ) → ( 𝜑𝜃 ) )
9 5 6 7 8 4cases ( 𝜑𝜃 )