Step |
Hyp |
Ref |
Expression |
1 |
|
4cyclusnfrgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
4cyclusnfrgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) |
4 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) |
5 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) |
6 |
|
4cycl2vnunb |
⊢ ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) → ¬ ∃! 𝑥 ∈ 𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 ) |
7 |
3 4 5 6
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ¬ ∃! 𝑥 ∈ 𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 ) |
8 |
1 2
|
frcond1 |
⊢ ( 𝐺 ∈ FriendGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) → ∃! 𝑥 ∈ 𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 ) ) |
9 |
|
pm2.24 |
⊢ ( ∃! 𝑥 ∈ 𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 → ( ¬ ∃! 𝑥 ∈ 𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph ) ) |
10 |
8 9
|
syl6com |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) → ( 𝐺 ∈ FriendGraph → ( ¬ ∃! 𝑥 ∈ 𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph ) ) ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) → ( 𝐺 ∈ FriendGraph → ( ¬ ∃! 𝑥 ∈ 𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph ) ) ) |
12 |
11
|
com23 |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) → ( ¬ ∃! 𝑥 ∈ 𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 → ( 𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph ) ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ( ¬ ∃! 𝑥 ∈ 𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 → ( 𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph ) ) ) |
14 |
7 13
|
mpd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ( 𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph ) ) |
15 |
14
|
pm2.01d |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ¬ 𝐺 ∈ FriendGraph ) |
16 |
|
df-nel |
⊢ ( 𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph ) |
17 |
15 16
|
sylibr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → 𝐺 ∉ FriendGraph ) |
18 |
17
|
ex |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ∧ 𝐵 ≠ 𝐷 ) ) → ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) → 𝐺 ∉ FriendGraph ) ) |