Metamath Proof Explorer


Theorem 4cyclusnfrgr

Description: A graph with a 4-cycle is not a friendhip graph. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Hypotheses 4cyclusnfrgr.v 𝑉 = ( Vtx ‘ 𝐺 )
4cyclusnfrgr.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion 4cyclusnfrgr ( ( 𝐺 ∈ USGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) → ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) → 𝐺 ∉ FriendGraph ) )

Proof

Step Hyp Ref Expression
1 4cyclusnfrgr.v 𝑉 = ( Vtx ‘ 𝐺 )
2 4cyclusnfrgr.e 𝐸 = ( Edg ‘ 𝐺 )
3 simprl ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) )
4 simprr ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) )
5 simpl3 ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) )
6 4cycl2vnunb ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) → ¬ ∃! 𝑥𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 )
7 3 4 5 6 syl3anc ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ¬ ∃! 𝑥𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 )
8 1 2 frcond1 ( 𝐺 ∈ FriendGraph → ( ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) → ∃! 𝑥𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 ) )
9 pm2.24 ( ∃! 𝑥𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 → ( ¬ ∃! 𝑥𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph ) )
10 8 9 syl6com ( ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) → ( 𝐺 ∈ FriendGraph → ( ¬ ∃! 𝑥𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph ) ) )
11 10 3ad2ant2 ( ( 𝐺 ∈ USGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) → ( 𝐺 ∈ FriendGraph → ( ¬ ∃! 𝑥𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph ) ) )
12 11 com23 ( ( 𝐺 ∈ USGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) → ( ¬ ∃! 𝑥𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 → ( 𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph ) ) )
13 12 adantr ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ( ¬ ∃! 𝑥𝑉 { { 𝐴 , 𝑥 } , { 𝑥 , 𝐶 } } ⊆ 𝐸 → ( 𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph ) ) )
14 7 13 mpd ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ( 𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph ) )
15 14 pm2.01d ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → ¬ 𝐺 ∈ FriendGraph )
16 df-nel ( 𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
17 15 16 sylibr ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) ∧ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) ) → 𝐺 ∉ FriendGraph )
18 17 ex ( ( 𝐺 ∈ USGraph ∧ ( 𝐴𝑉𝐶𝑉𝐴𝐶 ) ∧ ( 𝐵𝑉𝐷𝑉𝐵𝐷 ) ) → ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) → 𝐺 ∉ FriendGraph ) )