Metamath Proof Explorer


Theorem 4d2e2

Description: One half of four is two. (Contributed by NM, 3-Sep-1999)

Ref Expression
Assertion 4d2e2 ( 4 / 2 ) = 2

Proof

Step Hyp Ref Expression
1 2t2e4 ( 2 · 2 ) = 4
2 4cn 4 ∈ ℂ
3 2cn 2 ∈ ℂ
4 2ne0 2 ≠ 0
5 2 3 3 4 divmuli ( ( 4 / 2 ) = 2 ↔ ( 2 · 2 ) = 4 )
6 1 5 mpbir ( 4 / 2 ) = 2