Metamath Proof Explorer
		
		
		
		Description:  An integer which is divisible by 4 is divisible by 2, that is, is even.
     (Contributed by AV, 4-Jul-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 4dvdseven | ⊢  ( 4  ∥  𝑁  →  2  ∥  𝑁 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 2 | 1 | a1i | ⊢ ( 4  ∥  𝑁  →  2  ∈  ℤ ) | 
						
							| 3 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 4 | 3 | a1i | ⊢ ( 4  ∥  𝑁  →  4  ∈  ℤ ) | 
						
							| 5 |  | dvdszrcl | ⊢ ( 4  ∥  𝑁  →  ( 4  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 6 | 5 | simprd | ⊢ ( 4  ∥  𝑁  →  𝑁  ∈  ℤ ) | 
						
							| 7 | 2 4 6 | 3jca | ⊢ ( 4  ∥  𝑁  →  ( 2  ∈  ℤ  ∧  4  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 8 |  | z4even | ⊢ 2  ∥  4 | 
						
							| 9 | 8 | jctl | ⊢ ( 4  ∥  𝑁  →  ( 2  ∥  4  ∧  4  ∥  𝑁 ) ) | 
						
							| 10 |  | dvdstr | ⊢ ( ( 2  ∈  ℤ  ∧  4  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 2  ∥  4  ∧  4  ∥  𝑁 )  →  2  ∥  𝑁 ) ) | 
						
							| 11 | 7 9 10 | sylc | ⊢ ( 4  ∥  𝑁  →  2  ∥  𝑁 ) |