Metamath Proof Explorer


Theorem 4dvdseven

Description: An integer which is divisible by 4 is divisible by 2, that is, is even. (Contributed by AV, 4-Jul-2021)

Ref Expression
Assertion 4dvdseven ( 4 ∥ 𝑁 → 2 ∥ 𝑁 )

Proof

Step Hyp Ref Expression
1 2z 2 ∈ ℤ
2 1 a1i ( 4 ∥ 𝑁 → 2 ∈ ℤ )
3 4z 4 ∈ ℤ
4 3 a1i ( 4 ∥ 𝑁 → 4 ∈ ℤ )
5 dvdszrcl ( 4 ∥ 𝑁 → ( 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ) )
6 5 simprd ( 4 ∥ 𝑁𝑁 ∈ ℤ )
7 2 4 6 3jca ( 4 ∥ 𝑁 → ( 2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ) )
8 z4even 2 ∥ 4
9 8 jctl ( 4 ∥ 𝑁 → ( 2 ∥ 4 ∧ 4 ∥ 𝑁 ) )
10 dvdstr ( ( 2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 2 ∥ 4 ∧ 4 ∥ 𝑁 ) → 2 ∥ 𝑁 ) )
11 7 9 10 sylc ( 4 ∥ 𝑁 → 2 ∥ 𝑁 )