Metamath Proof Explorer
Description: An integer which is divisible by 4 is divisible by 2, that is, is even.
(Contributed by AV, 4-Jul-2021)
|
|
Ref |
Expression |
|
Assertion |
4dvdseven |
⊢ ( 4 ∥ 𝑁 → 2 ∥ 𝑁 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
⊢ 2 ∈ ℤ |
2 |
1
|
a1i |
⊢ ( 4 ∥ 𝑁 → 2 ∈ ℤ ) |
3 |
|
4z |
⊢ 4 ∈ ℤ |
4 |
3
|
a1i |
⊢ ( 4 ∥ 𝑁 → 4 ∈ ℤ ) |
5 |
|
dvdszrcl |
⊢ ( 4 ∥ 𝑁 → ( 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
6 |
5
|
simprd |
⊢ ( 4 ∥ 𝑁 → 𝑁 ∈ ℤ ) |
7 |
2 4 6
|
3jca |
⊢ ( 4 ∥ 𝑁 → ( 2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
8 |
|
z4even |
⊢ 2 ∥ 4 |
9 |
8
|
jctl |
⊢ ( 4 ∥ 𝑁 → ( 2 ∥ 4 ∧ 4 ∥ 𝑁 ) ) |
10 |
|
dvdstr |
⊢ ( ( 2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 2 ∥ 4 ∧ 4 ∥ 𝑁 ) → 2 ∥ 𝑁 ) ) |
11 |
7 9 10
|
sylc |
⊢ ( 4 ∥ 𝑁 → 2 ∥ 𝑁 ) |