Metamath Proof Explorer
Description: Formula-building rule for four existential quantifiers (deduction form).
(Contributed by NM, 3-Aug-1995)
|
|
Ref |
Expression |
|
Hypothesis |
4exbidv.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
4exbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜓 ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
4exbidv.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
1
|
2exbidv |
⊢ ( 𝜑 → ( ∃ 𝑧 ∃ 𝑤 𝜓 ↔ ∃ 𝑧 ∃ 𝑤 𝜒 ) ) |
3 |
2
|
2exbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜓 ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 𝜒 ) ) |