Metamath Proof Explorer


Theorem 4exdistrv

Description: Distribute two pairs of existential quantifiers (over disjoint variables) over a conjunction. For a version with fewer disjoint variable conditions but requiring more axioms, see ee4anv . (Contributed by BJ, 5-Jan-2023)

Ref Expression
Assertion 4exdistrv ( ∃ 𝑥𝑧𝑦𝑤 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑧𝑤 𝜓 ) )

Proof

Step Hyp Ref Expression
1 exdistrv ( ∃ 𝑦𝑤 ( 𝜑𝜓 ) ↔ ( ∃ 𝑦 𝜑 ∧ ∃ 𝑤 𝜓 ) )
2 1 2exbii ( ∃ 𝑥𝑧𝑦𝑤 ( 𝜑𝜓 ) ↔ ∃ 𝑥𝑧 ( ∃ 𝑦 𝜑 ∧ ∃ 𝑤 𝜓 ) )
3 exdistrv ( ∃ 𝑥𝑧 ( ∃ 𝑦 𝜑 ∧ ∃ 𝑤 𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑧𝑤 𝜓 ) )
4 2 3 bitri ( ∃ 𝑥𝑧𝑦𝑤 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑧𝑤 𝜓 ) )