| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 ) | 
						
							| 2 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 3 |  | elnn0uz | ⊢ ( 0  ∈  ℕ0  ↔  0  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 4 | 2 3 | mpbi | ⊢ 0  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 5 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 6 |  | elnn0uz | ⊢ ( 3  ∈  ℕ0  ↔  3  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 7 | 5 6 | mpbi | ⊢ 3  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 8 |  | uzss | ⊢ ( 3  ∈  ( ℤ≥ ‘ 0 )  →  ( ℤ≥ ‘ 3 )  ⊆  ( ℤ≥ ‘ 0 ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( ℤ≥ ‘ 3 )  ⊆  ( ℤ≥ ‘ 0 ) | 
						
							| 10 | 9 | sseli | ⊢ ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  →  𝐿  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 11 |  | eluzfz | ⊢ ( ( 0  ∈  ( ℤ≥ ‘ 0 )  ∧  𝐿  ∈  ( ℤ≥ ‘ 0 ) )  →  0  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 12 | 4 10 11 | sylancr | ⊢ ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  →  0  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  0  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 14 | 1 13 | ffvelcdmd | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  ( 𝑃 ‘ 0 )  ∈  𝑉 ) | 
						
							| 15 |  | clel5 | ⊢ ( ( 𝑃 ‘ 0 )  ∈  𝑉  ↔  ∃ 𝑎  ∈  𝑉 ( 𝑃 ‘ 0 )  =  𝑎 ) | 
						
							| 16 | 14 15 | sylib | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  ∃ 𝑎  ∈  𝑉 ( 𝑃 ‘ 0 )  =  𝑎 ) | 
						
							| 17 |  | 1eluzge0 | ⊢ 1  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 18 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 19 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 20 |  | 1le3 | ⊢ 1  ≤  3 | 
						
							| 21 |  | eluz2 | ⊢ ( 3  ∈  ( ℤ≥ ‘ 1 )  ↔  ( 1  ∈  ℤ  ∧  3  ∈  ℤ  ∧  1  ≤  3 ) ) | 
						
							| 22 | 18 19 20 21 | mpbir3an | ⊢ 3  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 23 |  | uzss | ⊢ ( 3  ∈  ( ℤ≥ ‘ 1 )  →  ( ℤ≥ ‘ 3 )  ⊆  ( ℤ≥ ‘ 1 ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ ( ℤ≥ ‘ 3 )  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 25 | 24 | sseli | ⊢ ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  →  𝐿  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 26 |  | eluzfz | ⊢ ( ( 1  ∈  ( ℤ≥ ‘ 0 )  ∧  𝐿  ∈  ( ℤ≥ ‘ 1 ) )  →  1  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 27 | 17 25 26 | sylancr | ⊢ ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  →  1  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  1  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 29 | 1 28 | ffvelcdmd | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  ( 𝑃 ‘ 1 )  ∈  𝑉 ) | 
						
							| 30 |  | clel5 | ⊢ ( ( 𝑃 ‘ 1 )  ∈  𝑉  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 ) | 
						
							| 31 | 29 30 | sylib | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 ) | 
						
							| 32 | 16 31 | jca | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  ( ∃ 𝑎  ∈  𝑉 ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 ) ) | 
						
							| 33 |  | 2eluzge0 | ⊢ 2  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 34 |  | uzuzle23 | ⊢ ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  →  𝐿  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 35 |  | eluzfz | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 0 )  ∧  𝐿  ∈  ( ℤ≥ ‘ 2 ) )  →  2  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 36 | 33 34 35 | sylancr | ⊢ ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  →  2  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  2  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 38 | 1 37 | ffvelcdmd | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  ( 𝑃 ‘ 2 )  ∈  𝑉 ) | 
						
							| 39 |  | clel5 | ⊢ ( ( 𝑃 ‘ 2 )  ∈  𝑉  ↔  ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐 ) | 
						
							| 40 | 38 39 | sylib | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐 ) | 
						
							| 41 |  | eluzfz | ⊢ ( ( 3  ∈  ( ℤ≥ ‘ 0 )  ∧  𝐿  ∈  ( ℤ≥ ‘ 3 ) )  →  3  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 42 | 7 41 | mpan | ⊢ ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  →  3  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  3  ∈  ( 0 ... 𝐿 ) ) | 
						
							| 44 | 1 43 | ffvelcdmd | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  ( 𝑃 ‘ 3 )  ∈  𝑉 ) | 
						
							| 45 |  | clel5 | ⊢ ( ( 𝑃 ‘ 3 )  ∈  𝑉  ↔  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) | 
						
							| 46 | 44 45 | sylib | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) | 
						
							| 47 | 32 40 46 | jca32 | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  ( ( ∃ 𝑎  ∈  𝑉 ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 48 |  | r19.42v | ⊢ ( ∃ 𝑑  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ∃ 𝑑  ∈  𝑉 ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 49 |  | r19.42v | ⊢ ( ∃ 𝑑  ∈  𝑉 ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ( 𝑃 ‘ 3 )  =  𝑑 )  ↔  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) | 
						
							| 50 | 49 | anbi2i | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ∃ 𝑑  ∈  𝑉 ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 51 | 48 50 | bitri | ⊢ ( ∃ 𝑑  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 52 | 51 | rexbii | ⊢ ( ∃ 𝑐  ∈  𝑉 ∃ 𝑑  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ∃ 𝑐  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 53 | 52 | 2rexbii | ⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ∃ 𝑑  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 54 |  | r19.42v | ⊢ ( ∃ 𝑐  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ∃ 𝑐  ∈  𝑉 ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 55 |  | r19.41v | ⊢ ( ∃ 𝑐  ∈  𝑉 ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 )  ↔  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) | 
						
							| 56 | 55 | anbi2i | ⊢ ( ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ∃ 𝑐  ∈  𝑉 ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 57 | 54 56 | bitri | ⊢ ( ∃ 𝑐  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 58 | 57 | 2rexbii | ⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 59 |  | r19.41v | ⊢ ( ∃ 𝑏  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ∃ 𝑏  ∈  𝑉 ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 60 |  | r19.42v | ⊢ ( ∃ 𝑏  ∈  𝑉 ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ↔  ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 ) ) | 
						
							| 61 | 60 | anbi1i | ⊢ ( ( ∃ 𝑏  ∈  𝑉 ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 62 | 59 61 | bitri | ⊢ ( ∃ 𝑏  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 63 | 62 | rexbii | ⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ∃ 𝑎  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 64 |  | r19.41v | ⊢ ( ∃ 𝑎  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ∃ 𝑎  ∈  𝑉 ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 65 |  | r19.41v | ⊢ ( ∃ 𝑎  ∈  𝑉 ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 )  ↔  ( ∃ 𝑎  ∈  𝑉 ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 ) ) | 
						
							| 66 | 65 | anbi1i | ⊢ ( ( ∃ 𝑎  ∈  𝑉 ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ( ∃ 𝑎  ∈  𝑉 ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 67 | 63 64 66 | 3bitri | ⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ( ∃ 𝑎  ∈  𝑉 ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 68 | 53 58 67 | 3bitri | ⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ∃ 𝑑  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ( 𝑃 ‘ 3 )  =  𝑑 ) )  ↔  ( ( ∃ 𝑎  ∈  𝑉 ( 𝑃 ‘ 0 )  =  𝑎  ∧  ∃ 𝑏  ∈  𝑉 ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ∃ 𝑐  ∈  𝑉 ( 𝑃 ‘ 2 )  =  𝑐  ∧  ∃ 𝑑  ∈  𝑉 ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) | 
						
							| 69 | 47 68 | sylibr | ⊢ ( ( 𝐿  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑃 : ( 0 ... 𝐿 ) ⟶ 𝑉 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ∃ 𝑑  ∈  𝑉 ( ( ( 𝑃 ‘ 0 )  =  𝑎  ∧  ( 𝑃 ‘ 1 )  =  𝑏 )  ∧  ( ( 𝑃 ‘ 2 )  =  𝑐  ∧  ( 𝑃 ‘ 3 )  =  𝑑 ) ) ) |