Metamath Proof Explorer


Theorem 4lt10

Description: 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 4lt10 4 < 1 0

Proof

Step Hyp Ref Expression
1 4lt5 4 < 5
2 5lt10 5 < 1 0
3 4re 4 ∈ ℝ
4 5re 5 ∈ ℝ
5 10re 1 0 ∈ ℝ
6 3 4 5 lttri ( ( 4 < 5 ∧ 5 < 1 0 ) → 4 < 1 0 )
7 1 2 6 mp2an 4 < 1 0