Metamath Proof Explorer


Theorem 4lt6

Description: 4 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 4lt6 4 < 6

Proof

Step Hyp Ref Expression
1 4lt5 4 < 5
2 5lt6 5 < 6
3 4re 4 ∈ ℝ
4 5re 5 ∈ ℝ
5 6re 6 ∈ ℝ
6 3 4 5 lttri ( ( 4 < 5 ∧ 5 < 6 ) → 4 < 6 )
7 1 2 6 mp2an 4 < 6