Metamath Proof Explorer


Theorem 4lt9

Description: 4 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion 4lt9 4 < 9

Proof

Step Hyp Ref Expression
1 4lt5 4 < 5
2 5lt9 5 < 9
3 4re 4 ∈ ℝ
4 5re 5 ∈ ℝ
5 9re 9 ∈ ℝ
6 3 4 5 lttri ( ( 4 < 5 ∧ 5 < 9 ) → 4 < 9 )
7 1 2 6 mp2an 4 < 9