| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3noncol.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | 3noncol.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | 3noncol.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | simp11 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝐾  ∈  HL ) | 
						
							| 5 | 4 | hllatd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝐾  ∈  Lat ) | 
						
							| 6 |  | simp2l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝑅  ∈  𝐴 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 8 | 7 3 | atbase | ⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 9 | 6 8 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝑅  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 10 |  | simp12 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 11 | 7 3 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 13 |  | simp13 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 14 | 7 3 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 16 |  | simp32 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 17 | 7 1 2 | latnlej1r | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑅  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑅  ≠  𝑄 ) | 
						
							| 18 | 5 9 12 15 16 17 | syl131anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝑅  ≠  𝑄 ) | 
						
							| 19 | 18 | necomd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝑄  ≠  𝑅 ) | 
						
							| 20 |  | simp2r | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝑆  ∈  𝐴 ) | 
						
							| 21 | 7 3 | atbase | ⊢ ( 𝑆  ∈  𝐴  →  𝑆  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝑆  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 23 | 7 2 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑅  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 24 | 5 15 9 23 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 25 |  | simp33 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) | 
						
							| 26 | 2 3 | hlatjass | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 )  =  ( 𝑃  ∨  ( 𝑄  ∨  𝑅 ) ) ) | 
						
							| 27 | 4 10 13 6 26 | syl13anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 )  =  ( 𝑃  ∨  ( 𝑄  ∨  𝑅 ) ) ) | 
						
							| 28 | 27 | breq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( 𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 )  ↔  𝑆  ≤  ( 𝑃  ∨  ( 𝑄  ∨  𝑅 ) ) ) ) | 
						
							| 29 | 25 28 | mtbid | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ¬  𝑆  ≤  ( 𝑃  ∨  ( 𝑄  ∨  𝑅 ) ) ) | 
						
							| 30 | 7 1 2 | latnlej2r | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  ( 𝑄  ∨  𝑅 ) ) )  →  ¬  𝑆  ≤  ( 𝑄  ∨  𝑅 ) ) | 
						
							| 31 | 5 22 12 24 29 30 | syl131anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ¬  𝑆  ≤  ( 𝑄  ∨  𝑅 ) ) | 
						
							| 32 |  | simp31 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 33 | 1 2 3 | hlatexch1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑅  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( 𝑃  ≤  ( 𝑄  ∨  𝑅 )  →  𝑅  ≤  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 34 | 4 10 6 13 32 33 | syl131anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( 𝑃  ≤  ( 𝑄  ∨  𝑅 )  →  𝑅  ≤  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 35 | 7 2 | latjcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 36 | 5 12 15 35 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 37 | 36 | breq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ↔  𝑅  ≤  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 38 | 34 37 | sylibrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( 𝑃  ≤  ( 𝑄  ∨  𝑅 )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 39 | 16 38 | mtod | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ¬  𝑃  ≤  ( 𝑄  ∨  𝑅 ) ) | 
						
							| 40 | 7 1 2 3 | hlexch1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ¬  𝑃  ≤  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑃  ≤  ( ( 𝑄  ∨  𝑅 )  ∨  𝑆 )  →  𝑆  ≤  ( ( 𝑄  ∨  𝑅 )  ∨  𝑃 ) ) ) | 
						
							| 41 | 4 10 20 24 39 40 | syl131anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( 𝑃  ≤  ( ( 𝑄  ∨  𝑅 )  ∨  𝑆 )  →  𝑆  ≤  ( ( 𝑄  ∨  𝑅 )  ∨  𝑃 ) ) ) | 
						
							| 42 | 7 2 | latjcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑅  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∨  𝑅 )  =  ( 𝑅  ∨  𝑄 ) ) | 
						
							| 43 | 5 15 9 42 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( 𝑄  ∨  𝑅 )  =  ( 𝑅  ∨  𝑄 ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( ( 𝑄  ∨  𝑅 )  ∨  𝑃 )  =  ( ( 𝑅  ∨  𝑄 )  ∨  𝑃 ) ) | 
						
							| 45 | 7 2 | latj31 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑅  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑅  ∨  𝑄 )  ∨  𝑃 )  =  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) | 
						
							| 46 | 5 9 15 12 45 | syl13anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( ( 𝑅  ∨  𝑄 )  ∨  𝑃 )  =  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) | 
						
							| 47 | 44 46 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( ( 𝑄  ∨  𝑅 )  ∨  𝑃 )  =  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) | 
						
							| 48 | 47 | breq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( 𝑆  ≤  ( ( 𝑄  ∨  𝑅 )  ∨  𝑃 )  ↔  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) ) | 
						
							| 49 | 41 48 | sylibd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( 𝑃  ≤  ( ( 𝑄  ∨  𝑅 )  ∨  𝑆 )  →  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) ) | 
						
							| 50 | 25 49 | mtod | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ¬  𝑃  ≤  ( ( 𝑄  ∨  𝑅 )  ∨  𝑆 ) ) | 
						
							| 51 | 19 31 50 | 3jca | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  →  ( 𝑄  ≠  𝑅  ∧  ¬  𝑆  ≤  ( 𝑄  ∨  𝑅 )  ∧  ¬  𝑃  ≤  ( ( 𝑄  ∨  𝑅 )  ∨  𝑆 ) ) ) |