Metamath Proof Explorer


Theorem 4p4e8

Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 4p4e8 ( 4 + 4 ) = 8

Proof

Step Hyp Ref Expression
1 df-4 4 = ( 3 + 1 )
2 1 oveq2i ( 4 + 4 ) = ( 4 + ( 3 + 1 ) )
3 4cn 4 ∈ ℂ
4 3cn 3 ∈ ℂ
5 ax-1cn 1 ∈ ℂ
6 3 4 5 addassi ( ( 4 + 3 ) + 1 ) = ( 4 + ( 3 + 1 ) )
7 2 6 eqtr4i ( 4 + 4 ) = ( ( 4 + 3 ) + 1 )
8 df-8 8 = ( 7 + 1 )
9 4p3e7 ( 4 + 3 ) = 7
10 9 oveq1i ( ( 4 + 3 ) + 1 ) = ( 7 + 1 )
11 8 10 eqtr4i 8 = ( ( 4 + 3 ) + 1 )
12 7 11 eqtr4i ( 4 + 4 ) = 8