Metamath Proof Explorer


Theorem 4ralbidv

Description: Formula-building rule for restricted universal quantifiers (deduction form.) (Contributed by Scott Fenton, 20-Feb-2025)

Ref Expression
Hypothesis 4ralbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion 4ralbidv ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜓 ↔ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜒 ) )

Proof

Step Hyp Ref Expression
1 4ralbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 ralbidv ( 𝜑 → ( ∀ 𝑤𝐷 𝜓 ↔ ∀ 𝑤𝐷 𝜒 ) )
3 2 3ralbidv ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜓 ↔ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜒 ) )