Metamath Proof Explorer
Description: Formula-building rule for restricted universal quantifiers (deduction
form.) (Contributed by Scott Fenton, 20-Feb-2025)
|
|
Ref |
Expression |
|
Hypothesis |
4ralbidv.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
4ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
4ralbidv.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
1
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐷 𝜓 ↔ ∀ 𝑤 ∈ 𝐷 𝜒 ) ) |
3 |
2
|
3ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 𝜒 ) ) |