Metamath Proof Explorer
		
		
		
		Description:  Inference adding four restricted universal quantifiers to both sides of
       an equivalence.  (Contributed by Scott Fenton, 28-Feb-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | 4ralbii.1 | ⊢ ( 𝜑  ↔  𝜓 ) | 
				
					|  | Assertion | 4ralbii | ⊢  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜑  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4ralbii.1 | ⊢ ( 𝜑  ↔  𝜓 ) | 
						
							| 2 | 1 | ralbii | ⊢ ( ∀ 𝑤  ∈  𝐷 𝜑  ↔  ∀ 𝑤  ∈  𝐷 𝜓 ) | 
						
							| 3 | 2 | 3ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜑  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜓 ) |