| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sqlem5.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 2 |
|
4sqlem5.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 3 |
|
4sqlem5.4 |
⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 4 |
|
4sqlem10.5 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) − ( 𝐵 ↑ 2 ) ) = 0 ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℕ ) |
| 6 |
5
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℤ ) |
| 7 |
|
zsqcl |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
| 9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ ℤ ) |
| 10 |
5
|
nnred |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℝ ) |
| 11 |
10
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 / 2 ) ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 / 2 ) ∈ ℂ ) |
| 13 |
12
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → - - ( 𝑀 / 2 ) = ( 𝑀 / 2 ) ) |
| 14 |
1 2 3
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |
| 16 |
15
|
simpld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ∈ ℤ ) |
| 17 |
16
|
zred |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ∈ ℝ ) |
| 18 |
1 2 3
|
4sqlem6 |
⊢ ( 𝜑 → ( - ( 𝑀 / 2 ) ≤ 𝐵 ∧ 𝐵 < ( 𝑀 / 2 ) ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( - ( 𝑀 / 2 ) ≤ 𝐵 ∧ 𝐵 < ( 𝑀 / 2 ) ) ) |
| 20 |
19
|
simprd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 < ( 𝑀 / 2 ) ) |
| 21 |
17 20
|
ltned |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ≠ ( 𝑀 / 2 ) ) |
| 22 |
21
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝐵 = ( 𝑀 / 2 ) ) |
| 23 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 2 ∈ ℂ ) |
| 24 |
23
|
sqvald |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 2 ↑ 2 ) = ( 2 · 2 ) ) |
| 25 |
24
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 ↑ 2 ) / ( 2 ↑ 2 ) ) = ( ( 𝑀 ↑ 2 ) / ( 2 · 2 ) ) ) |
| 26 |
5
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℂ ) |
| 27 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 2 ≠ 0 ) |
| 29 |
26 23 28
|
sqdivd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 / 2 ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 30 |
26
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∈ ℂ ) |
| 31 |
30 23 23 28 28
|
divdiv1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) = ( ( 𝑀 ↑ 2 ) / ( 2 · 2 ) ) ) |
| 32 |
25 29 31
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 / 2 ) ↑ 2 ) = ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 33 |
30
|
halfcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 ↑ 2 ) / 2 ) ∈ ℂ ) |
| 34 |
33
|
halfcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ∈ ℂ ) |
| 35 |
16
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ∈ ℂ ) |
| 36 |
35
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 37 |
34 36 4
|
subeq0d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) = ( 𝐵 ↑ 2 ) ) |
| 38 |
32 37
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐵 ↑ 2 ) = ( ( 𝑀 / 2 ) ↑ 2 ) ) |
| 39 |
|
sqeqor |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝑀 / 2 ) ∈ ℂ ) → ( ( 𝐵 ↑ 2 ) = ( ( 𝑀 / 2 ) ↑ 2 ) ↔ ( 𝐵 = ( 𝑀 / 2 ) ∨ 𝐵 = - ( 𝑀 / 2 ) ) ) ) |
| 40 |
35 12 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐵 ↑ 2 ) = ( ( 𝑀 / 2 ) ↑ 2 ) ↔ ( 𝐵 = ( 𝑀 / 2 ) ∨ 𝐵 = - ( 𝑀 / 2 ) ) ) ) |
| 41 |
38 40
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐵 = ( 𝑀 / 2 ) ∨ 𝐵 = - ( 𝑀 / 2 ) ) ) |
| 42 |
41
|
ord |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ¬ 𝐵 = ( 𝑀 / 2 ) → 𝐵 = - ( 𝑀 / 2 ) ) ) |
| 43 |
22 42
|
mpd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 = - ( 𝑀 / 2 ) ) |
| 44 |
43 16
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → - ( 𝑀 / 2 ) ∈ ℤ ) |
| 45 |
44
|
znegcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → - - ( 𝑀 / 2 ) ∈ ℤ ) |
| 46 |
13 45
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 / 2 ) ∈ ℤ ) |
| 47 |
9 46
|
zaddcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℤ ) |
| 48 |
|
zsqcl |
⊢ ( ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℤ → ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) ∈ ℤ ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) ∈ ℤ ) |
| 50 |
47 6
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ∈ ℤ ) |
| 51 |
47
|
zred |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℝ ) |
| 52 |
5
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℝ+ ) |
| 53 |
51 52
|
modcld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ∈ ℝ ) |
| 54 |
53
|
recnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ∈ ℂ ) |
| 55 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ∈ ℂ ) |
| 56 |
|
df-neg |
⊢ - ( 𝑀 / 2 ) = ( 0 − ( 𝑀 / 2 ) ) |
| 57 |
43 3 56
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) = ( 0 − ( 𝑀 / 2 ) ) ) |
| 58 |
54 55 12 57
|
subcan2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) = 0 ) |
| 59 |
|
dvdsval3 |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ↔ ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) = 0 ) ) |
| 60 |
5 47 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ↔ ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) = 0 ) ) |
| 61 |
58 60
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ) |
| 62 |
|
dvdssq |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ↔ ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) ) ) |
| 63 |
6 47 62
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ↔ ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) ) ) |
| 64 |
61 63
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) ) |
| 65 |
26
|
sqvald |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) = ( 𝑀 · 𝑀 ) ) |
| 66 |
5
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ≠ 0 ) |
| 67 |
|
dvdsmulcr |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → ( ( 𝑀 · 𝑀 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ↔ 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ) ) |
| 68 |
6 47 6 66 67
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 · 𝑀 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ↔ 𝑀 ∥ ( 𝐴 + ( 𝑀 / 2 ) ) ) ) |
| 69 |
61 68
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 · 𝑀 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) |
| 70 |
65 69
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) |
| 71 |
8 49 50 64 70
|
dvds2subd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∥ ( ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) ) |
| 72 |
47
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℂ ) |
| 73 |
72
|
sqvald |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( 𝐴 + ( 𝑀 / 2 ) ) ) ) |
| 74 |
73
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( 𝐴 + ( 𝑀 / 2 ) ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) ) |
| 75 |
72 72 26
|
subdid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( ( 𝐴 + ( 𝑀 / 2 ) ) − 𝑀 ) ) = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( 𝐴 + ( 𝑀 / 2 ) ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) ) |
| 76 |
26
|
2halvesd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) = 𝑀 ) |
| 77 |
76
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) − 𝑀 ) ) |
| 78 |
9
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ ℂ ) |
| 79 |
78 12 12
|
pnpcan2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) ) = ( 𝐴 − ( 𝑀 / 2 ) ) ) |
| 80 |
77 79
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) − 𝑀 ) = ( 𝐴 − ( 𝑀 / 2 ) ) ) |
| 81 |
80
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( ( 𝐴 + ( 𝑀 / 2 ) ) − 𝑀 ) ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( 𝐴 − ( 𝑀 / 2 ) ) ) ) |
| 82 |
|
subsq |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 / 2 ) ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − ( ( 𝑀 / 2 ) ↑ 2 ) ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( 𝐴 − ( 𝑀 / 2 ) ) ) ) |
| 83 |
78 12 82
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 ↑ 2 ) − ( ( 𝑀 / 2 ) ↑ 2 ) ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( 𝐴 − ( 𝑀 / 2 ) ) ) ) |
| 84 |
32
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 ↑ 2 ) − ( ( 𝑀 / 2 ) ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 85 |
81 83 84
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) · ( ( 𝐴 + ( 𝑀 / 2 ) ) − 𝑀 ) ) = ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 86 |
74 75 85
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) ↑ 2 ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) · 𝑀 ) ) = ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 87 |
71 86
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) − ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |