| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4sq.1 | ⊢ 𝑆  =  { 𝑛  ∣  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ 𝑛  =  ( ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  +  ( ( 𝑧 ↑ 2 )  +  ( 𝑤 ↑ 2 ) ) ) } | 
						
							| 2 |  | 4sq.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | 4sq.3 | ⊢ ( 𝜑  →  𝑃  =  ( ( 2  ·  𝑁 )  +  1 ) ) | 
						
							| 4 |  | 4sq.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | 4sqlem11.5 | ⊢ 𝐴  =  { 𝑢  ∣  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑢  =  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) } | 
						
							| 6 |  | 4sqlem11.6 | ⊢ 𝐹  =  ( 𝑣  ∈  𝐴  ↦  ( ( 𝑃  −  1 )  −  𝑣 ) ) | 
						
							| 7 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... ( 𝑃  −  1 ) )  ∈  Fin ) | 
						
							| 8 |  | elfzelz | ⊢ ( 𝑚  ∈  ( 0 ... 𝑁 )  →  𝑚  ∈  ℤ ) | 
						
							| 9 |  | zsqcl | ⊢ ( 𝑚  ∈  ℤ  →  ( 𝑚 ↑ 2 )  ∈  ℤ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝑚 ↑ 2 )  ∈  ℤ ) | 
						
							| 11 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 12 | 4 11 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 13 |  | zmodfz | ⊢ ( ( ( 𝑚 ↑ 2 )  ∈  ℤ  ∧  𝑃  ∈  ℕ )  →  ( ( 𝑚 ↑ 2 )  mod  𝑃 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 14 | 10 12 13 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑚 ↑ 2 )  mod  𝑃 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 15 |  | eleq1a | ⊢ ( ( ( 𝑚 ↑ 2 )  mod  𝑃 )  ∈  ( 0 ... ( 𝑃  −  1 ) )  →  ( 𝑢  =  ( ( 𝑚 ↑ 2 )  mod  𝑃 )  →  𝑢  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑢  =  ( ( 𝑚 ↑ 2 )  mod  𝑃 )  →  𝑢  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 17 | 16 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑢  =  ( ( 𝑚 ↑ 2 )  mod  𝑃 )  →  𝑢  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 18 | 17 | abssdv | ⊢ ( 𝜑  →  { 𝑢  ∣  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑢  =  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) }  ⊆  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 19 | 5 18 | eqsstrid | ⊢ ( 𝜑  →  𝐴  ⊆  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 20 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 21 | 4 20 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 22 |  | peano2zm | ⊢ ( 𝑃  ∈  ℤ  →  ( 𝑃  −  1 )  ∈  ℤ ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℤ ) | 
						
							| 24 | 23 | zcnd | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 25 | 24 | addlidd | ⊢ ( 𝜑  →  ( 0  +  ( 𝑃  −  1 ) )  =  ( 𝑃  −  1 ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝜑  →  ( ( 0  +  ( 𝑃  −  1 ) )  −  𝑣 )  =  ( ( 𝑃  −  1 )  −  𝑣 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐴 )  →  ( ( 0  +  ( 𝑃  −  1 ) )  −  𝑣 )  =  ( ( 𝑃  −  1 )  −  𝑣 ) ) | 
						
							| 28 | 19 | sselda | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐴 )  →  𝑣  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 29 |  | fzrev3i | ⊢ ( 𝑣  ∈  ( 0 ... ( 𝑃  −  1 ) )  →  ( ( 0  +  ( 𝑃  −  1 ) )  −  𝑣 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐴 )  →  ( ( 0  +  ( 𝑃  −  1 ) )  −  𝑣 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 31 | 27 30 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐴 )  →  ( ( 𝑃  −  1 )  −  𝑣 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 32 | 31 6 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 33 | 32 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 34 | 19 33 | unssd | ⊢ ( 𝜑  →  ( 𝐴  ∪  ran  𝐹 )  ⊆  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 35 | 7 34 | ssfid | ⊢ ( 𝜑  →  ( 𝐴  ∪  ran  𝐹 )  ∈  Fin ) | 
						
							| 36 |  | hashcl | ⊢ ( ( 𝐴  ∪  ran  𝐹 )  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) )  ∈  ℕ0 ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) )  ∈  ℕ0 ) | 
						
							| 38 | 37 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) )  ∈  ℝ ) | 
						
							| 39 | 21 | zred | ⊢ ( 𝜑  →  𝑃  ∈  ℝ ) | 
						
							| 40 |  | ssdomg | ⊢ ( ( 0 ... ( 𝑃  −  1 ) )  ∈  Fin  →  ( ( 𝐴  ∪  ran  𝐹 )  ⊆  ( 0 ... ( 𝑃  −  1 ) )  →  ( 𝐴  ∪  ran  𝐹 )  ≼  ( 0 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 41 | 7 34 40 | sylc | ⊢ ( 𝜑  →  ( 𝐴  ∪  ran  𝐹 )  ≼  ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 42 |  | hashdom | ⊢ ( ( ( 𝐴  ∪  ran  𝐹 )  ∈  Fin  ∧  ( 0 ... ( 𝑃  −  1 ) )  ∈  Fin )  →  ( ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) )  ≤  ( ♯ ‘ ( 0 ... ( 𝑃  −  1 ) ) )  ↔  ( 𝐴  ∪  ran  𝐹 )  ≼  ( 0 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 43 | 35 7 42 | syl2anc | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) )  ≤  ( ♯ ‘ ( 0 ... ( 𝑃  −  1 ) ) )  ↔  ( 𝐴  ∪  ran  𝐹 )  ≼  ( 0 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 44 | 41 43 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) )  ≤  ( ♯ ‘ ( 0 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 45 |  | fz01en | ⊢ ( 𝑃  ∈  ℤ  →  ( 0 ... ( 𝑃  −  1 ) )  ≈  ( 1 ... 𝑃 ) ) | 
						
							| 46 | 21 45 | syl | ⊢ ( 𝜑  →  ( 0 ... ( 𝑃  −  1 ) )  ≈  ( 1 ... 𝑃 ) ) | 
						
							| 47 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑃 )  ∈  Fin ) | 
						
							| 48 |  | hashen | ⊢ ( ( ( 0 ... ( 𝑃  −  1 ) )  ∈  Fin  ∧  ( 1 ... 𝑃 )  ∈  Fin )  →  ( ( ♯ ‘ ( 0 ... ( 𝑃  −  1 ) ) )  =  ( ♯ ‘ ( 1 ... 𝑃 ) )  ↔  ( 0 ... ( 𝑃  −  1 ) )  ≈  ( 1 ... 𝑃 ) ) ) | 
						
							| 49 | 7 47 48 | syl2anc | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 0 ... ( 𝑃  −  1 ) ) )  =  ( ♯ ‘ ( 1 ... 𝑃 ) )  ↔  ( 0 ... ( 𝑃  −  1 ) )  ≈  ( 1 ... 𝑃 ) ) ) | 
						
							| 50 | 46 49 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... ( 𝑃  −  1 ) ) )  =  ( ♯ ‘ ( 1 ... 𝑃 ) ) ) | 
						
							| 51 | 12 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 52 |  | hashfz1 | ⊢ ( 𝑃  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... 𝑃 ) )  =  𝑃 ) | 
						
							| 53 | 51 52 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 1 ... 𝑃 ) )  =  𝑃 ) | 
						
							| 54 | 50 53 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ... ( 𝑃  −  1 ) ) )  =  𝑃 ) | 
						
							| 55 | 44 54 | breqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) )  ≤  𝑃 ) | 
						
							| 56 | 38 39 55 | lensymd | ⊢ ( 𝜑  →  ¬  𝑃  <  ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) ) ) | 
						
							| 57 | 39 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∩  ran  𝐹 )  =  ∅ )  →  𝑃  ∈  ℝ ) | 
						
							| 58 | 57 | ltp1d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∩  ran  𝐹 )  =  ∅ )  →  𝑃  <  ( 𝑃  +  1 ) ) | 
						
							| 59 | 2 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 60 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 61 | 59 59 60 60 | add4d | ⊢ ( 𝜑  →  ( ( 𝑁  +  𝑁 )  +  ( 1  +  1 ) )  =  ( ( 𝑁  +  1 )  +  ( 𝑁  +  1 ) ) ) | 
						
							| 62 | 3 | oveq1d | ⊢ ( 𝜑  →  ( 𝑃  +  1 )  =  ( ( ( 2  ·  𝑁 )  +  1 )  +  1 ) ) | 
						
							| 63 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 64 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( 2  ·  𝑁 )  ∈  ℂ ) | 
						
							| 65 | 63 59 64 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ∈  ℂ ) | 
						
							| 66 | 65 60 60 | addassd | ⊢ ( 𝜑  →  ( ( ( 2  ·  𝑁 )  +  1 )  +  1 )  =  ( ( 2  ·  𝑁 )  +  ( 1  +  1 ) ) ) | 
						
							| 67 | 59 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  𝑁 )  =  ( 𝑁  +  𝑁 ) ) | 
						
							| 68 | 67 | oveq1d | ⊢ ( 𝜑  →  ( ( 2  ·  𝑁 )  +  ( 1  +  1 ) )  =  ( ( 𝑁  +  𝑁 )  +  ( 1  +  1 ) ) ) | 
						
							| 69 | 62 66 68 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑃  +  1 )  =  ( ( 𝑁  +  𝑁 )  +  ( 1  +  1 ) ) ) | 
						
							| 70 | 14 | ex | ⊢ ( 𝜑  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑚 ↑ 2 )  mod  𝑃 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 71 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑃  ∈  ℕ ) | 
						
							| 72 | 8 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑚  ∈  ℤ ) | 
						
							| 73 | 72 9 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚 ↑ 2 )  ∈  ℤ ) | 
						
							| 74 |  | elfzelz | ⊢ ( 𝑢  ∈  ( 0 ... 𝑁 )  →  𝑢  ∈  ℤ ) | 
						
							| 75 | 74 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑢  ∈  ℤ ) | 
						
							| 76 |  | zsqcl | ⊢ ( 𝑢  ∈  ℤ  →  ( 𝑢 ↑ 2 )  ∈  ℤ ) | 
						
							| 77 | 75 76 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑢 ↑ 2 )  ∈  ℤ ) | 
						
							| 78 |  | moddvds | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( 𝑚 ↑ 2 )  ∈  ℤ  ∧  ( 𝑢 ↑ 2 )  ∈  ℤ )  →  ( ( ( 𝑚 ↑ 2 )  mod  𝑃 )  =  ( ( 𝑢 ↑ 2 )  mod  𝑃 )  ↔  𝑃  ∥  ( ( 𝑚 ↑ 2 )  −  ( 𝑢 ↑ 2 ) ) ) ) | 
						
							| 79 | 71 73 77 78 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( ( ( 𝑚 ↑ 2 )  mod  𝑃 )  =  ( ( 𝑢 ↑ 2 )  mod  𝑃 )  ↔  𝑃  ∥  ( ( 𝑚 ↑ 2 )  −  ( 𝑢 ↑ 2 ) ) ) ) | 
						
							| 80 | 72 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 81 | 75 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑢  ∈  ℂ ) | 
						
							| 82 |  | subsq | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑢  ∈  ℂ )  →  ( ( 𝑚 ↑ 2 )  −  ( 𝑢 ↑ 2 ) )  =  ( ( 𝑚  +  𝑢 )  ·  ( 𝑚  −  𝑢 ) ) ) | 
						
							| 83 | 80 81 82 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( ( 𝑚 ↑ 2 )  −  ( 𝑢 ↑ 2 ) )  =  ( ( 𝑚  +  𝑢 )  ·  ( 𝑚  −  𝑢 ) ) ) | 
						
							| 84 | 83 | breq2d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑃  ∥  ( ( 𝑚 ↑ 2 )  −  ( 𝑢 ↑ 2 ) )  ↔  𝑃  ∥  ( ( 𝑚  +  𝑢 )  ·  ( 𝑚  −  𝑢 ) ) ) ) | 
						
							| 85 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 86 | 72 75 | zaddcld | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  +  𝑢 )  ∈  ℤ ) | 
						
							| 87 | 72 75 | zsubcld | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  −  𝑢 )  ∈  ℤ ) | 
						
							| 88 |  | euclemma | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑚  +  𝑢 )  ∈  ℤ  ∧  ( 𝑚  −  𝑢 )  ∈  ℤ )  →  ( 𝑃  ∥  ( ( 𝑚  +  𝑢 )  ·  ( 𝑚  −  𝑢 ) )  ↔  ( 𝑃  ∥  ( 𝑚  +  𝑢 )  ∨  𝑃  ∥  ( 𝑚  −  𝑢 ) ) ) ) | 
						
							| 89 | 85 86 87 88 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑃  ∥  ( ( 𝑚  +  𝑢 )  ·  ( 𝑚  −  𝑢 ) )  ↔  ( 𝑃  ∥  ( 𝑚  +  𝑢 )  ∨  𝑃  ∥  ( 𝑚  −  𝑢 ) ) ) ) | 
						
							| 90 | 79 84 89 | 3bitrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( ( ( 𝑚 ↑ 2 )  mod  𝑃 )  =  ( ( 𝑢 ↑ 2 )  mod  𝑃 )  ↔  ( 𝑃  ∥  ( 𝑚  +  𝑢 )  ∨  𝑃  ∥  ( 𝑚  −  𝑢 ) ) ) ) | 
						
							| 91 | 86 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  +  𝑢 )  ∈  ℝ ) | 
						
							| 92 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 93 | 2 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 94 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 2  ·  𝑁 )  ∈  ℝ ) | 
						
							| 95 | 92 93 94 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ∈  ℝ ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 2  ·  𝑁 )  ∈  ℝ ) | 
						
							| 97 | 85 20 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑃  ∈  ℤ ) | 
						
							| 98 | 97 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑃  ∈  ℝ ) | 
						
							| 99 | 72 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑚  ∈  ℝ ) | 
						
							| 100 | 75 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑢  ∈  ℝ ) | 
						
							| 101 | 93 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑁  ∈  ℝ ) | 
						
							| 102 |  | elfzle2 | ⊢ ( 𝑚  ∈  ( 0 ... 𝑁 )  →  𝑚  ≤  𝑁 ) | 
						
							| 103 | 102 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑚  ≤  𝑁 ) | 
						
							| 104 |  | elfzle2 | ⊢ ( 𝑢  ∈  ( 0 ... 𝑁 )  →  𝑢  ≤  𝑁 ) | 
						
							| 105 | 104 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑢  ≤  𝑁 ) | 
						
							| 106 | 99 100 101 101 103 105 | le2addd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  +  𝑢 )  ≤  ( 𝑁  +  𝑁 ) ) | 
						
							| 107 | 59 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  𝑁  ∈  ℂ ) | 
						
							| 108 | 107 | 2timesd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 2  ·  𝑁 )  =  ( 𝑁  +  𝑁 ) ) | 
						
							| 109 | 106 108 | breqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  +  𝑢 )  ≤  ( 2  ·  𝑁 ) ) | 
						
							| 110 | 95 | ltp1d | ⊢ ( 𝜑  →  ( 2  ·  𝑁 )  <  ( ( 2  ·  𝑁 )  +  1 ) ) | 
						
							| 111 | 110 3 | breqtrrd | ⊢ ( 𝜑  →  ( 2  ·  𝑁 )  <  𝑃 ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 2  ·  𝑁 )  <  𝑃 ) | 
						
							| 113 | 91 96 98 109 112 | lelttrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  +  𝑢 )  <  𝑃 ) | 
						
							| 114 | 91 98 | ltnled | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( ( 𝑚  +  𝑢 )  <  𝑃  ↔  ¬  𝑃  ≤  ( 𝑚  +  𝑢 ) ) ) | 
						
							| 115 | 113 114 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ¬  𝑃  ≤  ( 𝑚  +  𝑢 ) ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ¬  𝑃  ≤  ( 𝑚  +  𝑢 ) ) | 
						
							| 117 | 21 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  𝑃  ∈  ℤ ) | 
						
							| 118 | 86 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( 𝑚  +  𝑢 )  ∈  ℤ ) | 
						
							| 119 |  | 1red | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  1  ∈  ℝ ) | 
						
							| 120 |  | nn0abscl | ⊢ ( ( 𝑚  −  𝑢 )  ∈  ℤ  →  ( abs ‘ ( 𝑚  −  𝑢 ) )  ∈  ℕ0 ) | 
						
							| 121 | 87 120 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( abs ‘ ( 𝑚  −  𝑢 ) )  ∈  ℕ0 ) | 
						
							| 122 | 121 | nn0red | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( abs ‘ ( 𝑚  −  𝑢 ) )  ∈  ℝ ) | 
						
							| 123 | 122 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( abs ‘ ( 𝑚  −  𝑢 ) )  ∈  ℝ ) | 
						
							| 124 | 118 | zred | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( 𝑚  +  𝑢 )  ∈  ℝ ) | 
						
							| 125 | 121 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( abs ‘ ( 𝑚  −  𝑢 ) )  ∈  ℕ0 ) | 
						
							| 126 | 125 | nn0zd | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( abs ‘ ( 𝑚  −  𝑢 ) )  ∈  ℤ ) | 
						
							| 127 | 87 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  −  𝑢 )  ∈  ℂ ) | 
						
							| 128 | 127 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( 𝑚  −  𝑢 )  ∈  ℂ ) | 
						
							| 129 | 80 81 | subeq0ad | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( ( 𝑚  −  𝑢 )  =  0  ↔  𝑚  =  𝑢 ) ) | 
						
							| 130 | 129 | necon3bid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( ( 𝑚  −  𝑢 )  ≠  0  ↔  𝑚  ≠  𝑢 ) ) | 
						
							| 131 | 130 | biimpar | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( 𝑚  −  𝑢 )  ≠  0 ) | 
						
							| 132 | 128 131 | absrpcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( abs ‘ ( 𝑚  −  𝑢 ) )  ∈  ℝ+ ) | 
						
							| 133 | 132 | rpgt0d | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  0  <  ( abs ‘ ( 𝑚  −  𝑢 ) ) ) | 
						
							| 134 |  | elnnz | ⊢ ( ( abs ‘ ( 𝑚  −  𝑢 ) )  ∈  ℕ  ↔  ( ( abs ‘ ( 𝑚  −  𝑢 ) )  ∈  ℤ  ∧  0  <  ( abs ‘ ( 𝑚  −  𝑢 ) ) ) ) | 
						
							| 135 | 126 133 134 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( abs ‘ ( 𝑚  −  𝑢 ) )  ∈  ℕ ) | 
						
							| 136 | 135 | nnge1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  1  ≤  ( abs ‘ ( 𝑚  −  𝑢 ) ) ) | 
						
							| 137 |  | 0cnd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  0  ∈  ℂ ) | 
						
							| 138 | 80 81 137 | abs3difd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( abs ‘ ( 𝑚  −  𝑢 ) )  ≤  ( ( abs ‘ ( 𝑚  −  0 ) )  +  ( abs ‘ ( 0  −  𝑢 ) ) ) ) | 
						
							| 139 | 80 | subid1d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  −  0 )  =  𝑚 ) | 
						
							| 140 | 139 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( abs ‘ ( 𝑚  −  0 ) )  =  ( abs ‘ 𝑚 ) ) | 
						
							| 141 |  | elfzle1 | ⊢ ( 𝑚  ∈  ( 0 ... 𝑁 )  →  0  ≤  𝑚 ) | 
						
							| 142 | 141 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  0  ≤  𝑚 ) | 
						
							| 143 | 99 142 | absidd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( abs ‘ 𝑚 )  =  𝑚 ) | 
						
							| 144 | 140 143 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( abs ‘ ( 𝑚  −  0 ) )  =  𝑚 ) | 
						
							| 145 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 146 |  | abssub | ⊢ ( ( 0  ∈  ℂ  ∧  𝑢  ∈  ℂ )  →  ( abs ‘ ( 0  −  𝑢 ) )  =  ( abs ‘ ( 𝑢  −  0 ) ) ) | 
						
							| 147 | 145 81 146 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( abs ‘ ( 0  −  𝑢 ) )  =  ( abs ‘ ( 𝑢  −  0 ) ) ) | 
						
							| 148 | 81 | subid1d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑢  −  0 )  =  𝑢 ) | 
						
							| 149 | 148 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( abs ‘ ( 𝑢  −  0 ) )  =  ( abs ‘ 𝑢 ) ) | 
						
							| 150 |  | elfzle1 | ⊢ ( 𝑢  ∈  ( 0 ... 𝑁 )  →  0  ≤  𝑢 ) | 
						
							| 151 | 150 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  0  ≤  𝑢 ) | 
						
							| 152 | 100 151 | absidd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( abs ‘ 𝑢 )  =  𝑢 ) | 
						
							| 153 | 147 149 152 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( abs ‘ ( 0  −  𝑢 ) )  =  𝑢 ) | 
						
							| 154 | 144 153 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( ( abs ‘ ( 𝑚  −  0 ) )  +  ( abs ‘ ( 0  −  𝑢 ) ) )  =  ( 𝑚  +  𝑢 ) ) | 
						
							| 155 | 138 154 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( abs ‘ ( 𝑚  −  𝑢 ) )  ≤  ( 𝑚  +  𝑢 ) ) | 
						
							| 156 | 155 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( abs ‘ ( 𝑚  −  𝑢 ) )  ≤  ( 𝑚  +  𝑢 ) ) | 
						
							| 157 | 119 123 124 136 156 | letrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  1  ≤  ( 𝑚  +  𝑢 ) ) | 
						
							| 158 |  | elnnz1 | ⊢ ( ( 𝑚  +  𝑢 )  ∈  ℕ  ↔  ( ( 𝑚  +  𝑢 )  ∈  ℤ  ∧  1  ≤  ( 𝑚  +  𝑢 ) ) ) | 
						
							| 159 | 118 157 158 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( 𝑚  +  𝑢 )  ∈  ℕ ) | 
						
							| 160 |  | dvdsle | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( 𝑚  +  𝑢 )  ∈  ℕ )  →  ( 𝑃  ∥  ( 𝑚  +  𝑢 )  →  𝑃  ≤  ( 𝑚  +  𝑢 ) ) ) | 
						
							| 161 | 117 159 160 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( 𝑃  ∥  ( 𝑚  +  𝑢 )  →  𝑃  ≤  ( 𝑚  +  𝑢 ) ) ) | 
						
							| 162 | 116 161 | mtod | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ¬  𝑃  ∥  ( 𝑚  +  𝑢 ) ) | 
						
							| 163 | 162 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  ≠  𝑢  →  ¬  𝑃  ∥  ( 𝑚  +  𝑢 ) ) ) | 
						
							| 164 | 163 | necon4ad | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑃  ∥  ( 𝑚  +  𝑢 )  →  𝑚  =  𝑢 ) ) | 
						
							| 165 |  | dvdsabsb | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( 𝑚  −  𝑢 )  ∈  ℤ )  →  ( 𝑃  ∥  ( 𝑚  −  𝑢 )  ↔  𝑃  ∥  ( abs ‘ ( 𝑚  −  𝑢 ) ) ) ) | 
						
							| 166 | 97 87 165 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑃  ∥  ( 𝑚  −  𝑢 )  ↔  𝑃  ∥  ( abs ‘ ( 𝑚  −  𝑢 ) ) ) ) | 
						
							| 167 |  | letr | ⊢ ( ( 𝑃  ∈  ℝ  ∧  ( abs ‘ ( 𝑚  −  𝑢 ) )  ∈  ℝ  ∧  ( 𝑚  +  𝑢 )  ∈  ℝ )  →  ( ( 𝑃  ≤  ( abs ‘ ( 𝑚  −  𝑢 ) )  ∧  ( abs ‘ ( 𝑚  −  𝑢 ) )  ≤  ( 𝑚  +  𝑢 ) )  →  𝑃  ≤  ( 𝑚  +  𝑢 ) ) ) | 
						
							| 168 | 98 122 91 167 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( ( 𝑃  ≤  ( abs ‘ ( 𝑚  −  𝑢 ) )  ∧  ( abs ‘ ( 𝑚  −  𝑢 ) )  ≤  ( 𝑚  +  𝑢 ) )  →  𝑃  ≤  ( 𝑚  +  𝑢 ) ) ) | 
						
							| 169 | 155 168 | mpan2d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑃  ≤  ( abs ‘ ( 𝑚  −  𝑢 ) )  →  𝑃  ≤  ( 𝑚  +  𝑢 ) ) ) | 
						
							| 170 | 115 169 | mtod | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ¬  𝑃  ≤  ( abs ‘ ( 𝑚  −  𝑢 ) ) ) | 
						
							| 171 | 170 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ¬  𝑃  ≤  ( abs ‘ ( 𝑚  −  𝑢 ) ) ) | 
						
							| 172 | 97 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  𝑃  ∈  ℤ ) | 
						
							| 173 |  | dvdsle | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( abs ‘ ( 𝑚  −  𝑢 ) )  ∈  ℕ )  →  ( 𝑃  ∥  ( abs ‘ ( 𝑚  −  𝑢 ) )  →  𝑃  ≤  ( abs ‘ ( 𝑚  −  𝑢 ) ) ) ) | 
						
							| 174 | 172 135 173 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ( 𝑃  ∥  ( abs ‘ ( 𝑚  −  𝑢 ) )  →  𝑃  ≤  ( abs ‘ ( 𝑚  −  𝑢 ) ) ) ) | 
						
							| 175 | 171 174 | mtod | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  ∧  𝑚  ≠  𝑢 )  →  ¬  𝑃  ∥  ( abs ‘ ( 𝑚  −  𝑢 ) ) ) | 
						
							| 176 | 175 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  ≠  𝑢  →  ¬  𝑃  ∥  ( abs ‘ ( 𝑚  −  𝑢 ) ) ) ) | 
						
							| 177 | 176 | necon4ad | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑃  ∥  ( abs ‘ ( 𝑚  −  𝑢 ) )  →  𝑚  =  𝑢 ) ) | 
						
							| 178 | 166 177 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑃  ∥  ( 𝑚  −  𝑢 )  →  𝑚  =  𝑢 ) ) | 
						
							| 179 | 164 178 | jaod | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( ( 𝑃  ∥  ( 𝑚  +  𝑢 )  ∨  𝑃  ∥  ( 𝑚  −  𝑢 ) )  →  𝑚  =  𝑢 ) ) | 
						
							| 180 | 90 179 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( ( ( 𝑚 ↑ 2 )  mod  𝑃 )  =  ( ( 𝑢 ↑ 2 )  mod  𝑃 )  →  𝑚  =  𝑢 ) ) | 
						
							| 181 |  | oveq1 | ⊢ ( 𝑚  =  𝑢  →  ( 𝑚 ↑ 2 )  =  ( 𝑢 ↑ 2 ) ) | 
						
							| 182 | 181 | oveq1d | ⊢ ( 𝑚  =  𝑢  →  ( ( 𝑚 ↑ 2 )  mod  𝑃 )  =  ( ( 𝑢 ↑ 2 )  mod  𝑃 ) ) | 
						
							| 183 | 180 182 | impbid1 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) ) )  →  ( ( ( 𝑚 ↑ 2 )  mod  𝑃 )  =  ( ( 𝑢 ↑ 2 )  mod  𝑃 )  ↔  𝑚  =  𝑢 ) ) | 
						
							| 184 | 183 | ex | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑢  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝑚 ↑ 2 )  mod  𝑃 )  =  ( ( 𝑢 ↑ 2 )  mod  𝑃 )  ↔  𝑚  =  𝑢 ) ) ) | 
						
							| 185 | 70 184 | dom2lem | ⊢ ( 𝜑  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) : ( 0 ... 𝑁 ) –1-1→ ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 186 |  | f1f1orn | ⊢ ( ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) : ( 0 ... 𝑁 ) –1-1→ ( 0 ... ( 𝑃  −  1 ) )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ ran  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) ) | 
						
							| 187 | 185 186 | syl | ⊢ ( 𝜑  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ ran  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) ) | 
						
							| 188 |  | eqid | ⊢ ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) )  =  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) | 
						
							| 189 | 188 | rnmpt | ⊢ ran  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) )  =  { 𝑢  ∣  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑢  =  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) } | 
						
							| 190 | 5 189 | eqtr4i | ⊢ 𝐴  =  ran  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) | 
						
							| 191 |  | f1oeq3 | ⊢ ( 𝐴  =  ran  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) )  →  ( ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ 𝐴  ↔  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ ran  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) ) ) | 
						
							| 192 | 190 191 | ax-mp | ⊢ ( ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ 𝐴  ↔  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ ran  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) ) | 
						
							| 193 | 187 192 | sylibr | ⊢ ( 𝜑  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ 𝐴 ) | 
						
							| 194 |  | ovex | ⊢ ( 0 ... 𝑁 )  ∈  V | 
						
							| 195 | 194 | f1oen | ⊢ ( ( 𝑚  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑚 ↑ 2 )  mod  𝑃 ) ) : ( 0 ... 𝑁 ) –1-1-onto→ 𝐴  →  ( 0 ... 𝑁 )  ≈  𝐴 ) | 
						
							| 196 | 193 195 | syl | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  ≈  𝐴 ) | 
						
							| 197 | 196 | ensymd | ⊢ ( 𝜑  →  𝐴  ≈  ( 0 ... 𝑁 ) ) | 
						
							| 198 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 199 |  | pncan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 200 | 59 198 199 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 201 | 200 | oveq2d | ⊢ ( 𝜑  →  ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  =  ( 0 ... 𝑁 ) ) | 
						
							| 202 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 203 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 204 | 202 203 | syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 205 | 204 | nn0zd | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℤ ) | 
						
							| 206 |  | fz01en | ⊢ ( ( 𝑁  +  1 )  ∈  ℤ  →  ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  ≈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 207 | 205 206 | syl | ⊢ ( 𝜑  →  ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  ≈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 208 | 201 207 | eqbrtrrd | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  ≈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 209 |  | entr | ⊢ ( ( 𝐴  ≈  ( 0 ... 𝑁 )  ∧  ( 0 ... 𝑁 )  ≈  ( 1 ... ( 𝑁  +  1 ) ) )  →  𝐴  ≈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 210 | 197 208 209 | syl2anc | ⊢ ( 𝜑  →  𝐴  ≈  ( 1 ... ( 𝑁  +  1 ) ) ) | 
						
							| 211 | 7 19 | ssfid | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 212 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... ( 𝑁  +  1 ) )  ∈  Fin ) | 
						
							| 213 |  | hashen | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 1 ... ( 𝑁  +  1 ) )  ∈  Fin )  →  ( ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ ( 1 ... ( 𝑁  +  1 ) ) )  ↔  𝐴  ≈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 214 | 211 212 213 | syl2anc | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ ( 1 ... ( 𝑁  +  1 ) ) )  ↔  𝐴  ≈  ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 215 | 210 214 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ ( 1 ... ( 𝑁  +  1 ) ) ) ) | 
						
							| 216 |  | hashfz1 | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 217 | 204 216 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 1 ... ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 218 | 215 217 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  =  ( 𝑁  +  1 ) ) | 
						
							| 219 | 31 | ex | ⊢ ( 𝜑  →  ( 𝑣  ∈  𝐴  →  ( ( 𝑃  −  1 )  −  𝑣 )  ∈  ( 0 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 220 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐴  ∧  𝑘  ∈  𝐴 ) )  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 221 |  | fzssuz | ⊢ ( 0 ... ( 𝑃  −  1 ) )  ⊆  ( ℤ≥ ‘ 0 ) | 
						
							| 222 |  | uzssz | ⊢ ( ℤ≥ ‘ 0 )  ⊆  ℤ | 
						
							| 223 |  | zsscn | ⊢ ℤ  ⊆  ℂ | 
						
							| 224 | 222 223 | sstri | ⊢ ( ℤ≥ ‘ 0 )  ⊆  ℂ | 
						
							| 225 | 221 224 | sstri | ⊢ ( 0 ... ( 𝑃  −  1 ) )  ⊆  ℂ | 
						
							| 226 | 19 225 | sstrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 227 | 226 | sselda | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝐴 )  →  𝑣  ∈  ℂ ) | 
						
							| 228 | 227 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐴  ∧  𝑘  ∈  𝐴 ) )  →  𝑣  ∈  ℂ ) | 
						
							| 229 | 226 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  ℂ ) | 
						
							| 230 | 229 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐴  ∧  𝑘  ∈  𝐴 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 231 | 220 228 230 | subcanad | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐴  ∧  𝑘  ∈  𝐴 ) )  →  ( ( ( 𝑃  −  1 )  −  𝑣 )  =  ( ( 𝑃  −  1 )  −  𝑘 )  ↔  𝑣  =  𝑘 ) ) | 
						
							| 232 | 231 | ex | ⊢ ( 𝜑  →  ( ( 𝑣  ∈  𝐴  ∧  𝑘  ∈  𝐴 )  →  ( ( ( 𝑃  −  1 )  −  𝑣 )  =  ( ( 𝑃  −  1 )  −  𝑘 )  ↔  𝑣  =  𝑘 ) ) ) | 
						
							| 233 | 219 232 | dom2lem | ⊢ ( 𝜑  →  ( 𝑣  ∈  𝐴  ↦  ( ( 𝑃  −  1 )  −  𝑣 ) ) : 𝐴 –1-1→ ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 234 |  | f1eq1 | ⊢ ( 𝐹  =  ( 𝑣  ∈  𝐴  ↦  ( ( 𝑃  −  1 )  −  𝑣 ) )  →  ( 𝐹 : 𝐴 –1-1→ ( 0 ... ( 𝑃  −  1 ) )  ↔  ( 𝑣  ∈  𝐴  ↦  ( ( 𝑃  −  1 )  −  𝑣 ) ) : 𝐴 –1-1→ ( 0 ... ( 𝑃  −  1 ) ) ) ) | 
						
							| 235 | 6 234 | ax-mp | ⊢ ( 𝐹 : 𝐴 –1-1→ ( 0 ... ( 𝑃  −  1 ) )  ↔  ( 𝑣  ∈  𝐴  ↦  ( ( 𝑃  −  1 )  −  𝑣 ) ) : 𝐴 –1-1→ ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 236 | 233 235 | sylibr | ⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1→ ( 0 ... ( 𝑃  −  1 ) ) ) | 
						
							| 237 |  | f1f1orn | ⊢ ( 𝐹 : 𝐴 –1-1→ ( 0 ... ( 𝑃  −  1 ) )  →  𝐹 : 𝐴 –1-1-onto→ ran  𝐹 ) | 
						
							| 238 | 236 237 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1-onto→ ran  𝐹 ) | 
						
							| 239 | 211 238 | hasheqf1od | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ ran  𝐹 ) ) | 
						
							| 240 | 239 218 | eqtr3d | ⊢ ( 𝜑  →  ( ♯ ‘ ran  𝐹 )  =  ( 𝑁  +  1 ) ) | 
						
							| 241 | 218 240 | oveq12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ ran  𝐹 ) )  =  ( ( 𝑁  +  1 )  +  ( 𝑁  +  1 ) ) ) | 
						
							| 242 | 61 69 241 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝑃  +  1 )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ ran  𝐹 ) ) ) | 
						
							| 243 | 242 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∩  ran  𝐹 )  =  ∅ )  →  ( 𝑃  +  1 )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ ran  𝐹 ) ) ) | 
						
							| 244 | 211 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∩  ran  𝐹 )  =  ∅ )  →  𝐴  ∈  Fin ) | 
						
							| 245 | 7 33 | ssfid | ⊢ ( 𝜑  →  ran  𝐹  ∈  Fin ) | 
						
							| 246 | 245 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∩  ran  𝐹 )  =  ∅ )  →  ran  𝐹  ∈  Fin ) | 
						
							| 247 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∩  ran  𝐹 )  =  ∅ )  →  ( 𝐴  ∩  ran  𝐹 )  =  ∅ ) | 
						
							| 248 |  | hashun | ⊢ ( ( 𝐴  ∈  Fin  ∧  ran  𝐹  ∈  Fin  ∧  ( 𝐴  ∩  ran  𝐹 )  =  ∅ )  →  ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ ran  𝐹 ) ) ) | 
						
							| 249 | 244 246 247 248 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∩  ran  𝐹 )  =  ∅ )  →  ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ ran  𝐹 ) ) ) | 
						
							| 250 | 243 249 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∩  ran  𝐹 )  =  ∅ )  →  ( 𝑃  +  1 )  =  ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) ) ) | 
						
							| 251 | 58 250 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∩  ran  𝐹 )  =  ∅ )  →  𝑃  <  ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) ) ) | 
						
							| 252 | 251 | ex | ⊢ ( 𝜑  →  ( ( 𝐴  ∩  ran  𝐹 )  =  ∅  →  𝑃  <  ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) ) ) ) | 
						
							| 253 | 252 | necon3bd | ⊢ ( 𝜑  →  ( ¬  𝑃  <  ( ♯ ‘ ( 𝐴  ∪  ran  𝐹 ) )  →  ( 𝐴  ∩  ran  𝐹 )  ≠  ∅ ) ) | 
						
							| 254 | 56 253 | mpd | ⊢ ( 𝜑  →  ( 𝐴  ∩  ran  𝐹 )  ≠  ∅ ) |