Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } |
2 |
|
4sq.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
4sq.3 |
⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) |
4 |
|
4sq.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
4sq.5 |
⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) |
6 |
|
4sq.6 |
⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } |
7 |
|
4sq.7 |
⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) |
8 |
|
eqid |
⊢ { 𝑢 ∣ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) } = { 𝑢 ∣ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) } |
9 |
|
eqid |
⊢ ( 𝑣 ∈ { 𝑢 ∣ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) } ↦ ( ( 𝑃 − 1 ) − 𝑣 ) ) = ( 𝑣 ∈ { 𝑢 ∣ ∃ 𝑚 ∈ ( 0 ... 𝑁 ) 𝑢 = ( ( 𝑚 ↑ 2 ) mod 𝑃 ) } ↦ ( ( 𝑃 − 1 ) − 𝑣 ) ) |
10 |
1 2 3 4 8 9
|
4sqlem12 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∃ 𝑢 ∈ ℤ[i] ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) |
11 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ) |
12 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) → 𝑘 ∈ ℕ ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑘 ∈ ℕ ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) |
15 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
16 |
15
|
oveq1i |
⊢ ( ( abs ‘ 1 ) ↑ 2 ) = ( 1 ↑ 2 ) |
17 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
18 |
16 17
|
eqtri |
⊢ ( ( abs ‘ 1 ) ↑ 2 ) = 1 |
19 |
18
|
oveq2i |
⊢ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 1 ) ↑ 2 ) ) = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) |
20 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑢 ∈ ℤ[i] ) |
21 |
|
1z |
⊢ 1 ∈ ℤ |
22 |
|
zgz |
⊢ ( 1 ∈ ℤ → 1 ∈ ℤ[i] ) |
23 |
21 22
|
ax-mp |
⊢ 1 ∈ ℤ[i] |
24 |
1
|
4sqlem4a |
⊢ ( ( 𝑢 ∈ ℤ[i] ∧ 1 ∈ ℤ[i] ) → ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 1 ) ↑ 2 ) ) ∈ 𝑆 ) |
25 |
20 23 24
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 1 ) ↑ 2 ) ) ∈ 𝑆 ) |
26 |
19 25
|
eqeltrrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) ∈ 𝑆 ) |
27 |
14 26
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( 𝑘 · 𝑃 ) ∈ 𝑆 ) |
28 |
|
oveq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 · 𝑃 ) = ( 𝑘 · 𝑃 ) ) |
29 |
28
|
eleq1d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑖 · 𝑃 ) ∈ 𝑆 ↔ ( 𝑘 · 𝑃 ) ∈ 𝑆 ) ) |
30 |
29 6
|
elrab2 |
⊢ ( 𝑘 ∈ 𝑇 ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑘 · 𝑃 ) ∈ 𝑆 ) ) |
31 |
13 27 30
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑘 ∈ 𝑇 ) |
32 |
31
|
ne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑇 ≠ ∅ ) |
33 |
6
|
ssrab3 |
⊢ 𝑇 ⊆ ℕ |
34 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
35 |
33 34
|
sseqtri |
⊢ 𝑇 ⊆ ( ℤ≥ ‘ 1 ) |
36 |
|
infssuzcl |
⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
37 |
35 32 36
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
38 |
7 37
|
eqeltrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑀 ∈ 𝑇 ) |
39 |
33 38
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑀 ∈ ℕ ) |
40 |
39
|
nnred |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑀 ∈ ℝ ) |
41 |
13
|
nnred |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑘 ∈ ℝ ) |
42 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑃 ∈ ℙ ) |
43 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
44 |
42 43
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑃 ∈ ℕ ) |
45 |
44
|
nnred |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑃 ∈ ℝ ) |
46 |
|
infssuzle |
⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑘 ∈ 𝑇 ) → inf ( 𝑇 , ℝ , < ) ≤ 𝑘 ) |
47 |
35 31 46
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → inf ( 𝑇 , ℝ , < ) ≤ 𝑘 ) |
48 |
7 47
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑀 ≤ 𝑘 ) |
49 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
50 |
42 49
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑃 ∈ ℤ ) |
51 |
|
elfzm11 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑃 ) ) ) |
52 |
21 50 51
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑃 ) ) ) |
53 |
11 52
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ∧ 𝑘 < 𝑃 ) ) |
54 |
53
|
simp3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑘 < 𝑃 ) |
55 |
40 41 45 48 54
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → 𝑀 < 𝑃 ) |
56 |
32 55
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) ∧ ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) ) → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) |
57 |
56
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∧ 𝑢 ∈ ℤ[i] ) ) → ( ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) ) |
58 |
57
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ( 1 ... ( 𝑃 − 1 ) ) ∃ 𝑢 ∈ ℤ[i] ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + 1 ) = ( 𝑘 · 𝑃 ) → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) ) |
59 |
10 58
|
mpd |
⊢ ( 𝜑 → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) |