| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4sq.1 | ⊢ 𝑆  =  { 𝑛  ∣  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ 𝑛  =  ( ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  +  ( ( 𝑧 ↑ 2 )  +  ( 𝑤 ↑ 2 ) ) ) } | 
						
							| 2 |  | 4sq.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | 4sq.3 | ⊢ ( 𝜑  →  𝑃  =  ( ( 2  ·  𝑁 )  +  1 ) ) | 
						
							| 4 |  | 4sq.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | 4sq.5 | ⊢ ( 𝜑  →  ( 0 ... ( 2  ·  𝑁 ) )  ⊆  𝑆 ) | 
						
							| 6 |  | 4sq.6 | ⊢ 𝑇  =  { 𝑖  ∈  ℕ  ∣  ( 𝑖  ·  𝑃 )  ∈  𝑆 } | 
						
							| 7 |  | 4sq.7 | ⊢ 𝑀  =  inf ( 𝑇 ,  ℝ ,   <  ) | 
						
							| 8 |  | 4sq.m | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 9 |  | 4sq.a | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 10 |  | 4sq.b | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 11 |  | 4sq.c | ⊢ ( 𝜑  →  𝐶  ∈  ℤ ) | 
						
							| 12 |  | 4sq.d | ⊢ ( 𝜑  →  𝐷  ∈  ℤ ) | 
						
							| 13 |  | 4sq.e | ⊢ 𝐸  =  ( ( ( 𝐴  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) | 
						
							| 14 |  | 4sq.f | ⊢ 𝐹  =  ( ( ( 𝐵  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) | 
						
							| 15 |  | 4sq.g | ⊢ 𝐺  =  ( ( ( 𝐶  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) | 
						
							| 16 |  | 4sq.h | ⊢ 𝐻  =  ( ( ( 𝐷  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) | 
						
							| 17 |  | 4sq.r | ⊢ 𝑅  =  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 ) | 
						
							| 18 |  | 4sq.p | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑃 )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) | 
						
							| 19 | 6 | ssrab3 | ⊢ 𝑇  ⊆  ℕ | 
						
							| 20 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 21 | 19 20 | sseqtri | ⊢ 𝑇  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 22 | 1 2 3 4 5 6 7 | 4sqlem13 | ⊢ ( 𝜑  →  ( 𝑇  ≠  ∅  ∧  𝑀  <  𝑃 ) ) | 
						
							| 23 | 22 | simpld | ⊢ ( 𝜑  →  𝑇  ≠  ∅ ) | 
						
							| 24 |  | infssuzcl | ⊢ ( ( 𝑇  ⊆  ( ℤ≥ ‘ 1 )  ∧  𝑇  ≠  ∅ )  →  inf ( 𝑇 ,  ℝ ,   <  )  ∈  𝑇 ) | 
						
							| 25 | 21 23 24 | sylancr | ⊢ ( 𝜑  →  inf ( 𝑇 ,  ℝ ,   <  )  ∈  𝑇 ) | 
						
							| 26 | 7 25 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  𝑇 ) | 
						
							| 27 | 19 26 | sselid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 28 | 27 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 29 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 30 | 4 29 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 31 | 28 30 | zmulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑃 )  ∈  ℤ ) | 
						
							| 32 | 9 27 13 | 4sqlem5 | ⊢ ( 𝜑  →  ( 𝐸  ∈  ℤ  ∧  ( ( 𝐴  −  𝐸 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 33 | 32 | simpld | ⊢ ( 𝜑  →  𝐸  ∈  ℤ ) | 
						
							| 34 |  | zsqcl2 | ⊢ ( 𝐸  ∈  ℤ  →  ( 𝐸 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 36 | 10 27 14 | 4sqlem5 | ⊢ ( 𝜑  →  ( 𝐹  ∈  ℤ  ∧  ( ( 𝐵  −  𝐹 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 37 | 36 | simpld | ⊢ ( 𝜑  →  𝐹  ∈  ℤ ) | 
						
							| 38 |  | zsqcl2 | ⊢ ( 𝐹  ∈  ℤ  →  ( 𝐹 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 40 | 35 39 | nn0addcld | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ∈  ℕ0 ) | 
						
							| 41 | 40 | nn0zd | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ∈  ℤ ) | 
						
							| 42 | 11 27 15 | 4sqlem5 | ⊢ ( 𝜑  →  ( 𝐺  ∈  ℤ  ∧  ( ( 𝐶  −  𝐺 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 43 | 42 | simpld | ⊢ ( 𝜑  →  𝐺  ∈  ℤ ) | 
						
							| 44 |  | zsqcl2 | ⊢ ( 𝐺  ∈  ℤ  →  ( 𝐺 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 45 | 43 44 | syl | ⊢ ( 𝜑  →  ( 𝐺 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 46 | 12 27 16 | 4sqlem5 | ⊢ ( 𝜑  →  ( 𝐻  ∈  ℤ  ∧  ( ( 𝐷  −  𝐻 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 47 | 46 | simpld | ⊢ ( 𝜑  →  𝐻  ∈  ℤ ) | 
						
							| 48 |  | zsqcl2 | ⊢ ( 𝐻  ∈  ℤ  →  ( 𝐻 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝜑  →  ( 𝐻 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 50 | 45 49 | nn0addcld | ⊢ ( 𝜑  →  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ∈  ℕ0 ) | 
						
							| 51 | 50 | nn0zd | ⊢ ( 𝜑  →  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ∈  ℤ ) | 
						
							| 52 | 41 51 | zaddcld | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℤ ) | 
						
							| 53 | 31 52 | zsubcld | ⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑃 )  −  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  ∈  ℤ ) | 
						
							| 54 |  | dvdsmul1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  𝑀  ∥  ( 𝑀  ·  𝑃 ) ) | 
						
							| 55 | 28 30 54 | syl2anc | ⊢ ( 𝜑  →  𝑀  ∥  ( 𝑀  ·  𝑃 ) ) | 
						
							| 56 |  | zsqcl | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴 ↑ 2 )  ∈  ℤ ) | 
						
							| 57 | 9 56 | syl | ⊢ ( 𝜑  →  ( 𝐴 ↑ 2 )  ∈  ℤ ) | 
						
							| 58 |  | zsqcl | ⊢ ( 𝐵  ∈  ℤ  →  ( 𝐵 ↑ 2 )  ∈  ℤ ) | 
						
							| 59 | 10 58 | syl | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℤ ) | 
						
							| 60 | 57 59 | zaddcld | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∈  ℤ ) | 
						
							| 61 | 60 41 | zsubcld | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  ∈  ℤ ) | 
						
							| 62 |  | zsqcl | ⊢ ( 𝐶  ∈  ℤ  →  ( 𝐶 ↑ 2 )  ∈  ℤ ) | 
						
							| 63 | 11 62 | syl | ⊢ ( 𝜑  →  ( 𝐶 ↑ 2 )  ∈  ℤ ) | 
						
							| 64 |  | zsqcl | ⊢ ( 𝐷  ∈  ℤ  →  ( 𝐷 ↑ 2 )  ∈  ℤ ) | 
						
							| 65 | 12 64 | syl | ⊢ ( 𝜑  →  ( 𝐷 ↑ 2 )  ∈  ℤ ) | 
						
							| 66 | 63 65 | zaddcld | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  ∈  ℤ ) | 
						
							| 67 | 66 51 | zsubcld | ⊢ ( 𝜑  →  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℤ ) | 
						
							| 68 | 35 | nn0zd | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℤ ) | 
						
							| 69 | 57 68 | zsubcld | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  −  ( 𝐸 ↑ 2 ) )  ∈  ℤ ) | 
						
							| 70 | 39 | nn0zd | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ∈  ℤ ) | 
						
							| 71 | 59 70 | zsubcld | ⊢ ( 𝜑  →  ( ( 𝐵 ↑ 2 )  −  ( 𝐹 ↑ 2 ) )  ∈  ℤ ) | 
						
							| 72 | 9 27 13 | 4sqlem8 | ⊢ ( 𝜑  →  𝑀  ∥  ( ( 𝐴 ↑ 2 )  −  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 73 | 10 27 14 | 4sqlem8 | ⊢ ( 𝜑  →  𝑀  ∥  ( ( 𝐵 ↑ 2 )  −  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 74 | 28 69 71 72 73 | dvds2addd | ⊢ ( 𝜑  →  𝑀  ∥  ( ( ( 𝐴 ↑ 2 )  −  ( 𝐸 ↑ 2 ) )  +  ( ( 𝐵 ↑ 2 )  −  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 75 | 9 | zcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 76 | 75 | sqcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 77 | 10 | zcnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 78 | 77 | sqcld | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℂ ) | 
						
							| 79 | 33 | zcnd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 80 | 79 | sqcld | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℂ ) | 
						
							| 81 | 37 | zcnd | ⊢ ( 𝜑  →  𝐹  ∈  ℂ ) | 
						
							| 82 | 81 | sqcld | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ∈  ℂ ) | 
						
							| 83 | 76 78 80 82 | addsub4d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  −  ( 𝐸 ↑ 2 ) )  +  ( ( 𝐵 ↑ 2 )  −  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 84 | 74 83 | breqtrrd | ⊢ ( 𝜑  →  𝑀  ∥  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 85 | 45 | nn0zd | ⊢ ( 𝜑  →  ( 𝐺 ↑ 2 )  ∈  ℤ ) | 
						
							| 86 | 63 85 | zsubcld | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ 2 )  −  ( 𝐺 ↑ 2 ) )  ∈  ℤ ) | 
						
							| 87 | 49 | nn0zd | ⊢ ( 𝜑  →  ( 𝐻 ↑ 2 )  ∈  ℤ ) | 
						
							| 88 | 65 87 | zsubcld | ⊢ ( 𝜑  →  ( ( 𝐷 ↑ 2 )  −  ( 𝐻 ↑ 2 ) )  ∈  ℤ ) | 
						
							| 89 | 11 27 15 | 4sqlem8 | ⊢ ( 𝜑  →  𝑀  ∥  ( ( 𝐶 ↑ 2 )  −  ( 𝐺 ↑ 2 ) ) ) | 
						
							| 90 | 12 27 16 | 4sqlem8 | ⊢ ( 𝜑  →  𝑀  ∥  ( ( 𝐷 ↑ 2 )  −  ( 𝐻 ↑ 2 ) ) ) | 
						
							| 91 | 28 86 88 89 90 | dvds2addd | ⊢ ( 𝜑  →  𝑀  ∥  ( ( ( 𝐶 ↑ 2 )  −  ( 𝐺 ↑ 2 ) )  +  ( ( 𝐷 ↑ 2 )  −  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 92 | 11 | zcnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 93 | 92 | sqcld | ⊢ ( 𝜑  →  ( 𝐶 ↑ 2 )  ∈  ℂ ) | 
						
							| 94 | 12 | zcnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 95 | 94 | sqcld | ⊢ ( 𝜑  →  ( 𝐷 ↑ 2 )  ∈  ℂ ) | 
						
							| 96 | 43 | zcnd | ⊢ ( 𝜑  →  𝐺  ∈  ℂ ) | 
						
							| 97 | 96 | sqcld | ⊢ ( 𝜑  →  ( 𝐺 ↑ 2 )  ∈  ℂ ) | 
						
							| 98 | 47 | zcnd | ⊢ ( 𝜑  →  𝐻  ∈  ℂ ) | 
						
							| 99 | 98 | sqcld | ⊢ ( 𝜑  →  ( 𝐻 ↑ 2 )  ∈  ℂ ) | 
						
							| 100 | 93 95 97 99 | addsub4d | ⊢ ( 𝜑  →  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  =  ( ( ( 𝐶 ↑ 2 )  −  ( 𝐺 ↑ 2 ) )  +  ( ( 𝐷 ↑ 2 )  −  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 101 | 91 100 | breqtrrd | ⊢ ( 𝜑  →  𝑀  ∥  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 102 | 28 61 67 84 101 | dvds2addd | ⊢ ( 𝜑  →  𝑀  ∥  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  +  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) ) | 
						
							| 103 | 18 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑃 )  −  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  −  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) ) | 
						
							| 104 | 76 78 | addcld | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 105 | 93 95 | addcld | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 106 | 80 82 | addcld | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 107 | 97 99 | addcld | ⊢ ( 𝜑  →  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 108 | 104 105 106 107 | addsub4d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  −  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  +  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) ) | 
						
							| 109 | 103 108 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑃 )  −  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  +  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) ) | 
						
							| 110 | 102 109 | breqtrrd | ⊢ ( 𝜑  →  𝑀  ∥  ( ( 𝑀  ·  𝑃 )  −  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) ) | 
						
							| 111 | 28 31 53 55 110 | dvds2subd | ⊢ ( 𝜑  →  𝑀  ∥  ( ( 𝑀  ·  𝑃 )  −  ( ( 𝑀  ·  𝑃 )  −  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) ) ) | 
						
							| 112 | 27 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 113 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 114 | 4 113 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 115 | 114 | nncnd | ⊢ ( 𝜑  →  𝑃  ∈  ℂ ) | 
						
							| 116 | 112 115 | mulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑃 )  ∈  ℂ ) | 
						
							| 117 | 106 107 | addcld | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 118 | 116 117 | nncand | ⊢ ( 𝜑  →  ( ( 𝑀  ·  𝑃 )  −  ( ( 𝑀  ·  𝑃 )  −  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) )  =  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 119 | 111 118 | breqtrd | ⊢ ( 𝜑  →  𝑀  ∥  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 120 | 27 | nnne0d | ⊢ ( 𝜑  →  𝑀  ≠  0 ) | 
						
							| 121 | 40 50 | nn0addcld | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℕ0 ) | 
						
							| 122 | 121 | nn0zd | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℤ ) | 
						
							| 123 |  | dvdsval2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑀  ≠  0  ∧  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℤ )  →  ( 𝑀  ∥  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ↔  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 124 | 28 120 122 123 | syl3anc | ⊢ ( 𝜑  →  ( 𝑀  ∥  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ↔  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 125 | 119 124 | mpbid | ⊢ ( 𝜑  →  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  ∈  ℤ ) | 
						
							| 126 | 121 | nn0red | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℝ ) | 
						
							| 127 | 121 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 128 | 27 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 129 | 27 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑀 ) | 
						
							| 130 |  | divge0 | ⊢ ( ( ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℝ  ∧  0  ≤  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  ∧  ( 𝑀  ∈  ℝ  ∧  0  <  𝑀 ) )  →  0  ≤  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 ) ) | 
						
							| 131 | 126 127 128 129 130 | syl22anc | ⊢ ( 𝜑  →  0  ≤  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 ) ) | 
						
							| 132 |  | elnn0z | ⊢ ( ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  ∈  ℕ0  ↔  ( ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  ∈  ℤ  ∧  0  ≤  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 ) ) ) | 
						
							| 133 | 125 131 132 | sylanbrc | ⊢ ( 𝜑  →  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  ∈  ℕ0 ) | 
						
							| 134 | 17 133 | eqeltrid | ⊢ ( 𝜑  →  𝑅  ∈  ℕ0 ) |