| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4sq.1 | ⊢ 𝑆  =  { 𝑛  ∣  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ 𝑛  =  ( ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  +  ( ( 𝑧 ↑ 2 )  +  ( 𝑤 ↑ 2 ) ) ) } | 
						
							| 2 |  | 4sq.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | 4sq.3 | ⊢ ( 𝜑  →  𝑃  =  ( ( 2  ·  𝑁 )  +  1 ) ) | 
						
							| 4 |  | 4sq.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | 4sq.5 | ⊢ ( 𝜑  →  ( 0 ... ( 2  ·  𝑁 ) )  ⊆  𝑆 ) | 
						
							| 6 |  | 4sq.6 | ⊢ 𝑇  =  { 𝑖  ∈  ℕ  ∣  ( 𝑖  ·  𝑃 )  ∈  𝑆 } | 
						
							| 7 |  | 4sq.7 | ⊢ 𝑀  =  inf ( 𝑇 ,  ℝ ,   <  ) | 
						
							| 8 |  | 4sq.m | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 9 |  | 4sq.a | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 10 |  | 4sq.b | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 11 |  | 4sq.c | ⊢ ( 𝜑  →  𝐶  ∈  ℤ ) | 
						
							| 12 |  | 4sq.d | ⊢ ( 𝜑  →  𝐷  ∈  ℤ ) | 
						
							| 13 |  | 4sq.e | ⊢ 𝐸  =  ( ( ( 𝐴  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) | 
						
							| 14 |  | 4sq.f | ⊢ 𝐹  =  ( ( ( 𝐵  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) | 
						
							| 15 |  | 4sq.g | ⊢ 𝐺  =  ( ( ( 𝐶  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) | 
						
							| 16 |  | 4sq.h | ⊢ 𝐻  =  ( ( ( 𝐷  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) | 
						
							| 17 |  | 4sq.r | ⊢ 𝑅  =  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 ) | 
						
							| 18 |  | 4sq.p | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑃 )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) | 
						
							| 19 |  | eluz2nn | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  →  𝑀  ∈  ℕ ) | 
						
							| 20 | 8 19 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 21 | 20 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 22 | 21 | resqcld | ⊢ ( 𝜑  →  ( 𝑀 ↑ 2 )  ∈  ℝ ) | 
						
							| 23 | 22 | rehalfcld | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ 2 )  /  2 )  ∈  ℝ ) | 
						
							| 24 | 23 | rehalfcld | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  ∈  ℝ ) | 
						
							| 25 | 24 | recnd | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  ∈  ℂ ) | 
						
							| 26 | 9 20 13 | 4sqlem5 | ⊢ ( 𝜑  →  ( 𝐸  ∈  ℤ  ∧  ( ( 𝐴  −  𝐸 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( 𝜑  →  𝐸  ∈  ℤ ) | 
						
							| 28 |  | zsqcl | ⊢ ( 𝐸  ∈  ℤ  →  ( 𝐸 ↑ 2 )  ∈  ℤ ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℤ ) | 
						
							| 30 | 29 | zred | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℝ ) | 
						
							| 31 | 30 | recnd | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℂ ) | 
						
							| 32 | 10 20 14 | 4sqlem5 | ⊢ ( 𝜑  →  ( 𝐹  ∈  ℤ  ∧  ( ( 𝐵  −  𝐹 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 33 | 32 | simpld | ⊢ ( 𝜑  →  𝐹  ∈  ℤ ) | 
						
							| 34 |  | zsqcl | ⊢ ( 𝐹  ∈  ℤ  →  ( 𝐹 ↑ 2 )  ∈  ℤ ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ∈  ℤ ) | 
						
							| 36 | 35 | zred | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ∈  ℝ ) | 
						
							| 37 | 36 | recnd | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ∈  ℂ ) | 
						
							| 38 | 25 25 31 37 | addsub4d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  =  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 39 | 23 | recnd | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ 2 )  /  2 )  ∈  ℂ ) | 
						
							| 40 | 39 | 2halvesd | ⊢ ( 𝜑  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  =  ( ( 𝑀 ↑ 2 )  /  2 ) ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  =  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 42 | 38 41 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) ) )  =  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) ) )  =  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 44 | 22 | recnd | ⊢ ( 𝜑  →  ( 𝑀 ↑ 2 )  ∈  ℂ ) | 
						
							| 45 | 44 | 2halvesd | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  +  ( ( 𝑀 ↑ 2 )  /  2 ) )  =  ( 𝑀 ↑ 2 ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  +  ( ( 𝑀 ↑ 2 )  /  2 ) )  =  ( 𝑀 ↑ 2 ) ) | 
						
							| 47 | 21 | recnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 48 | 47 | sqvald | ⊢ ( 𝜑  →  ( 𝑀 ↑ 2 )  =  ( 𝑀  ·  𝑀 ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  =  ( 𝑀  ·  𝑀 ) ) | 
						
							| 50 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  𝑅  =  𝑀 ) | 
						
							| 51 | 17 50 | eqtr3id | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  =  𝑀 ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  ·  𝑀 )  =  ( 𝑀  ·  𝑀 ) ) | 
						
							| 53 | 30 36 | readdcld | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 54 | 11 20 15 | 4sqlem5 | ⊢ ( 𝜑  →  ( 𝐺  ∈  ℤ  ∧  ( ( 𝐶  −  𝐺 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 55 | 54 | simpld | ⊢ ( 𝜑  →  𝐺  ∈  ℤ ) | 
						
							| 56 |  | zsqcl | ⊢ ( 𝐺  ∈  ℤ  →  ( 𝐺 ↑ 2 )  ∈  ℤ ) | 
						
							| 57 | 55 56 | syl | ⊢ ( 𝜑  →  ( 𝐺 ↑ 2 )  ∈  ℤ ) | 
						
							| 58 | 57 | zred | ⊢ ( 𝜑  →  ( 𝐺 ↑ 2 )  ∈  ℝ ) | 
						
							| 59 | 12 20 16 | 4sqlem5 | ⊢ ( 𝜑  →  ( 𝐻  ∈  ℤ  ∧  ( ( 𝐷  −  𝐻 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 60 | 59 | simpld | ⊢ ( 𝜑  →  𝐻  ∈  ℤ ) | 
						
							| 61 |  | zsqcl | ⊢ ( 𝐻  ∈  ℤ  →  ( 𝐻 ↑ 2 )  ∈  ℤ ) | 
						
							| 62 | 60 61 | syl | ⊢ ( 𝜑  →  ( 𝐻 ↑ 2 )  ∈  ℤ ) | 
						
							| 63 | 62 | zred | ⊢ ( 𝜑  →  ( 𝐻 ↑ 2 )  ∈  ℝ ) | 
						
							| 64 | 58 63 | readdcld | ⊢ ( 𝜑  →  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 65 | 53 64 | readdcld | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℝ ) | 
						
							| 66 | 65 | recnd | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 67 | 20 | nnne0d | ⊢ ( 𝜑  →  𝑀  ≠  0 ) | 
						
							| 68 | 66 47 67 | divcan1d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  ·  𝑀 )  =  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  ·  𝑀 )  =  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 70 | 49 52 69 | 3eqtr2rd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  =  ( 𝑀 ↑ 2 ) ) | 
						
							| 71 | 46 70 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  +  ( ( 𝑀 ↑ 2 )  /  2 ) )  −  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  =  ( ( 𝑀 ↑ 2 )  −  ( 𝑀 ↑ 2 ) ) ) | 
						
							| 72 | 53 | recnd | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 73 | 64 | recnd | ⊢ ( 𝜑  →  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 74 | 39 39 72 73 | addsub4d | ⊢ ( 𝜑  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  +  ( ( 𝑀 ↑ 2 )  /  2 ) )  −  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  =  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  +  ( ( 𝑀 ↑ 2 )  /  2 ) )  −  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  =  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) ) | 
						
							| 76 | 44 | subidd | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ 2 )  −  ( 𝑀 ↑ 2 ) )  =  0 ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( 𝑀 ↑ 2 )  −  ( 𝑀 ↑ 2 ) )  =  0 ) | 
						
							| 78 | 71 75 77 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  =  0 ) | 
						
							| 79 | 23 53 | resubcld | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  ∈  ℝ ) | 
						
							| 80 | 9 20 13 | 4sqlem7 | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) | 
						
							| 81 | 10 20 14 | 4sqlem7 | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) | 
						
							| 82 | 30 36 24 24 80 81 | le2addd | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) | 
						
							| 83 | 82 40 | breqtrd | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ≤  ( ( 𝑀 ↑ 2 )  /  2 ) ) | 
						
							| 84 | 23 53 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  ↔  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ≤  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) | 
						
							| 85 | 83 84 | mpbird | ⊢ ( 𝜑  →  0  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) ) ) | 
						
							| 86 | 23 64 | resubcld | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℝ ) | 
						
							| 87 | 11 20 15 | 4sqlem7 | ⊢ ( 𝜑  →  ( 𝐺 ↑ 2 )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) | 
						
							| 88 | 12 20 16 | 4sqlem7 | ⊢ ( 𝜑  →  ( 𝐻 ↑ 2 )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) | 
						
							| 89 | 58 63 24 24 87 88 | le2addd | ⊢ ( 𝜑  →  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) | 
						
							| 90 | 89 40 | breqtrd | ⊢ ( 𝜑  →  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ≤  ( ( 𝑀 ↑ 2 )  /  2 ) ) | 
						
							| 91 | 23 64 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ↔  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ≤  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) | 
						
							| 92 | 90 91 | mpbird | ⊢ ( 𝜑  →  0  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 93 |  | add20 | ⊢ ( ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  ∈  ℝ  ∧  0  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) ) )  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℝ  ∧  0  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) )  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  =  0  ↔  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  =  0  ∧  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  =  0 ) ) ) | 
						
							| 94 | 79 85 86 92 93 | syl22anc | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  =  0  ↔  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  =  0  ∧  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  =  0 ) ) ) | 
						
							| 95 | 94 | biimpa | ⊢ ( ( 𝜑  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  =  0 )  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  =  0  ∧  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  =  0 ) ) | 
						
							| 96 | 78 95 | syldan | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  =  0  ∧  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  =  0 ) ) | 
						
							| 97 | 96 | simpld | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  =  0 ) | 
						
							| 98 | 43 97 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) ) )  =  0 ) | 
						
							| 99 | 24 30 | resubcld | ⊢ ( 𝜑  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 100 | 24 30 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  ↔  ( 𝐸 ↑ 2 )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) | 
						
							| 101 | 80 100 | mpbird | ⊢ ( 𝜑  →  0  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 102 | 24 36 | resubcld | ⊢ ( 𝜑  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 103 | 24 36 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) )  ↔  ( 𝐹 ↑ 2 )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) | 
						
							| 104 | 81 103 | mpbird | ⊢ ( 𝜑  →  0  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 105 |  | add20 | ⊢ ( ( ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  ∈  ℝ  ∧  0  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) ) )  ∧  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) )  ∈  ℝ  ∧  0  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) ) ) )  →  ( ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) ) )  =  0  ↔  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) )  =  0 ) ) ) | 
						
							| 106 | 99 101 102 104 105 | syl22anc | ⊢ ( 𝜑  →  ( ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) ) )  =  0  ↔  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) )  =  0 ) ) ) | 
						
							| 107 | 106 | biimpa | ⊢ ( ( 𝜑  ∧  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) ) )  =  0 )  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) )  =  0 ) ) | 
						
							| 108 | 98 107 | syldan | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) )  =  0 ) ) | 
						
							| 109 | 58 | recnd | ⊢ ( 𝜑  →  ( 𝐺 ↑ 2 )  ∈  ℂ ) | 
						
							| 110 | 63 | recnd | ⊢ ( 𝜑  →  ( 𝐻 ↑ 2 )  ∈  ℂ ) | 
						
							| 111 | 25 25 109 110 | addsub4d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  =  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 112 | 40 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  =  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 113 | 111 112 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) ) )  =  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 114 | 113 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) ) )  =  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) ) | 
						
							| 115 | 96 | simprd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  −  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  =  0 ) | 
						
							| 116 | 114 115 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) ) )  =  0 ) | 
						
							| 117 | 24 58 | resubcld | ⊢ ( 𝜑  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 118 | 24 58 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  ↔  ( 𝐺 ↑ 2 )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) | 
						
							| 119 | 87 118 | mpbird | ⊢ ( 𝜑  →  0  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) ) ) | 
						
							| 120 | 24 63 | resubcld | ⊢ ( 𝜑  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 121 | 24 63 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) )  ↔  ( 𝐻 ↑ 2 )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) | 
						
							| 122 | 88 121 | mpbird | ⊢ ( 𝜑  →  0  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) ) ) | 
						
							| 123 |  | add20 | ⊢ ( ( ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  ∈  ℝ  ∧  0  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) ) )  ∧  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) )  ∈  ℝ  ∧  0  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) ) ) )  →  ( ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) ) )  =  0  ↔  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) )  =  0 ) ) ) | 
						
							| 124 | 117 119 120 122 123 | syl22anc | ⊢ ( 𝜑  →  ( ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) ) )  =  0  ↔  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) )  =  0 ) ) ) | 
						
							| 125 | 124 | biimpa | ⊢ ( ( 𝜑  ∧  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  +  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) ) )  =  0 )  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) )  =  0 ) ) | 
						
							| 126 | 116 125 | syldan | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) )  =  0 ) ) | 
						
							| 127 | 108 126 | jca | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) )  =  0 )  ∧  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) )  =  0 ) ) ) |