| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4sq.1 | ⊢ 𝑆  =  { 𝑛  ∣  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ 𝑛  =  ( ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  +  ( ( 𝑧 ↑ 2 )  +  ( 𝑤 ↑ 2 ) ) ) } | 
						
							| 2 |  | 4sq.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | 4sq.3 | ⊢ ( 𝜑  →  𝑃  =  ( ( 2  ·  𝑁 )  +  1 ) ) | 
						
							| 4 |  | 4sq.4 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | 4sq.5 | ⊢ ( 𝜑  →  ( 0 ... ( 2  ·  𝑁 ) )  ⊆  𝑆 ) | 
						
							| 6 |  | 4sq.6 | ⊢ 𝑇  =  { 𝑖  ∈  ℕ  ∣  ( 𝑖  ·  𝑃 )  ∈  𝑆 } | 
						
							| 7 |  | 4sq.7 | ⊢ 𝑀  =  inf ( 𝑇 ,  ℝ ,   <  ) | 
						
							| 8 |  | 4sq.m | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 9 |  | 4sq.a | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 10 |  | 4sq.b | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 11 |  | 4sq.c | ⊢ ( 𝜑  →  𝐶  ∈  ℤ ) | 
						
							| 12 |  | 4sq.d | ⊢ ( 𝜑  →  𝐷  ∈  ℤ ) | 
						
							| 13 |  | 4sq.e | ⊢ 𝐸  =  ( ( ( 𝐴  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) | 
						
							| 14 |  | 4sq.f | ⊢ 𝐹  =  ( ( ( 𝐵  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) | 
						
							| 15 |  | 4sq.g | ⊢ 𝐺  =  ( ( ( 𝐶  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) | 
						
							| 16 |  | 4sq.h | ⊢ 𝐻  =  ( ( ( 𝐷  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) | 
						
							| 17 |  | 4sq.r | ⊢ 𝑅  =  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 ) | 
						
							| 18 |  | 4sq.p | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑃 )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) | 
						
							| 19 |  | eluz2nn | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  →  𝑀  ∈  ℕ ) | 
						
							| 20 | 8 19 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 21 | 9 20 13 | 4sqlem5 | ⊢ ( 𝜑  →  ( 𝐸  ∈  ℤ  ∧  ( ( 𝐴  −  𝐸 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 22 | 21 | simpld | ⊢ ( 𝜑  →  𝐸  ∈  ℤ ) | 
						
							| 23 |  | zsqcl | ⊢ ( 𝐸  ∈  ℤ  →  ( 𝐸 ↑ 2 )  ∈  ℤ ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℤ ) | 
						
							| 25 | 24 | zred | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℝ ) | 
						
							| 26 | 10 20 14 | 4sqlem5 | ⊢ ( 𝜑  →  ( 𝐹  ∈  ℤ  ∧  ( ( 𝐵  −  𝐹 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( 𝜑  →  𝐹  ∈  ℤ ) | 
						
							| 28 |  | zsqcl | ⊢ ( 𝐹  ∈  ℤ  →  ( 𝐹 ↑ 2 )  ∈  ℤ ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ∈  ℤ ) | 
						
							| 30 | 29 | zred | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ∈  ℝ ) | 
						
							| 31 | 25 30 | readdcld | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 32 | 11 20 15 | 4sqlem5 | ⊢ ( 𝜑  →  ( 𝐺  ∈  ℤ  ∧  ( ( 𝐶  −  𝐺 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 33 | 32 | simpld | ⊢ ( 𝜑  →  𝐺  ∈  ℤ ) | 
						
							| 34 |  | zsqcl | ⊢ ( 𝐺  ∈  ℤ  →  ( 𝐺 ↑ 2 )  ∈  ℤ ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝜑  →  ( 𝐺 ↑ 2 )  ∈  ℤ ) | 
						
							| 36 | 35 | zred | ⊢ ( 𝜑  →  ( 𝐺 ↑ 2 )  ∈  ℝ ) | 
						
							| 37 | 12 20 16 | 4sqlem5 | ⊢ ( 𝜑  →  ( 𝐻  ∈  ℤ  ∧  ( ( 𝐷  −  𝐻 )  /  𝑀 )  ∈  ℤ ) ) | 
						
							| 38 | 37 | simpld | ⊢ ( 𝜑  →  𝐻  ∈  ℤ ) | 
						
							| 39 |  | zsqcl | ⊢ ( 𝐻  ∈  ℤ  →  ( 𝐻 ↑ 2 )  ∈  ℤ ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝜑  →  ( 𝐻 ↑ 2 )  ∈  ℤ ) | 
						
							| 41 | 40 | zred | ⊢ ( 𝜑  →  ( 𝐻 ↑ 2 )  ∈  ℝ ) | 
						
							| 42 | 36 41 | readdcld | ⊢ ( 𝜑  →  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 43 | 20 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 44 | 43 | resqcld | ⊢ ( 𝜑  →  ( 𝑀 ↑ 2 )  ∈  ℝ ) | 
						
							| 45 | 44 | rehalfcld | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ 2 )  /  2 )  ∈  ℝ ) | 
						
							| 46 | 45 | rehalfcld | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  ∈  ℝ ) | 
						
							| 47 | 9 20 13 | 4sqlem7 | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) | 
						
							| 48 | 10 20 14 | 4sqlem7 | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) | 
						
							| 49 | 25 30 46 46 47 48 | le2addd | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) | 
						
							| 50 | 45 | recnd | ⊢ ( 𝜑  →  ( ( 𝑀 ↑ 2 )  /  2 )  ∈  ℂ ) | 
						
							| 51 | 50 | 2halvesd | ⊢ ( 𝜑  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  =  ( ( 𝑀 ↑ 2 )  /  2 ) ) | 
						
							| 52 | 49 51 | breqtrd | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ≤  ( ( 𝑀 ↑ 2 )  /  2 ) ) | 
						
							| 53 | 11 20 15 | 4sqlem7 | ⊢ ( 𝜑  →  ( 𝐺 ↑ 2 )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) | 
						
							| 54 | 12 20 16 | 4sqlem7 | ⊢ ( 𝜑  →  ( 𝐻 ↑ 2 )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) | 
						
							| 55 | 36 41 46 46 53 54 | le2addd | ⊢ ( 𝜑  →  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ≤  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) | 
						
							| 56 | 55 51 | breqtrd | ⊢ ( 𝜑  →  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ≤  ( ( 𝑀 ↑ 2 )  /  2 ) ) | 
						
							| 57 | 31 42 45 45 52 56 | le2addd | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ≤  ( ( ( 𝑀 ↑ 2 )  /  2 )  +  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) | 
						
							| 58 | 44 | recnd | ⊢ ( 𝜑  →  ( 𝑀 ↑ 2 )  ∈  ℂ ) | 
						
							| 59 | 58 | 2halvesd | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  +  ( ( 𝑀 ↑ 2 )  /  2 ) )  =  ( 𝑀 ↑ 2 ) ) | 
						
							| 60 | 57 59 | breqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ≤  ( 𝑀 ↑ 2 ) ) | 
						
							| 61 | 43 | recnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 62 | 61 | sqvald | ⊢ ( 𝜑  →  ( 𝑀 ↑ 2 )  =  ( 𝑀  ·  𝑀 ) ) | 
						
							| 63 | 60 62 | breqtrd | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ≤  ( 𝑀  ·  𝑀 ) ) | 
						
							| 64 | 31 42 | readdcld | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℝ ) | 
						
							| 65 | 20 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑀 ) | 
						
							| 66 |  | ledivmul | ⊢ ( ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ( 𝑀  ∈  ℝ  ∧  0  <  𝑀 ) )  →  ( ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  ≤  𝑀  ↔  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ≤  ( 𝑀  ·  𝑀 ) ) ) | 
						
							| 67 | 64 43 43 65 66 | syl112anc | ⊢ ( 𝜑  →  ( ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  ≤  𝑀  ↔  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ≤  ( 𝑀  ·  𝑀 ) ) ) | 
						
							| 68 | 63 67 | mpbird | ⊢ ( 𝜑  →  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  ≤  𝑀 ) | 
						
							| 69 | 17 68 | eqbrtrid | ⊢ ( 𝜑  →  𝑅  ≤  𝑀 ) | 
						
							| 70 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  𝑅  =  0 ) | 
						
							| 71 | 17 70 | eqtr3id | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  =  0 ) | 
						
							| 72 | 64 | recnd | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 73 | 20 | nnne0d | ⊢ ( 𝜑  →  𝑀  ≠  0 ) | 
						
							| 74 | 72 61 73 | diveq0ad | ⊢ ( 𝜑  →  ( ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  =  0  ↔  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  =  0 ) ) | 
						
							| 75 |  | zsqcl2 | ⊢ ( 𝐸  ∈  ℤ  →  ( 𝐸 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 76 | 22 75 | syl | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 77 |  | zsqcl2 | ⊢ ( 𝐹  ∈  ℤ  →  ( 𝐹 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 78 | 27 77 | syl | ⊢ ( 𝜑  →  ( 𝐹 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 79 | 76 78 | nn0addcld | ⊢ ( 𝜑  →  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ∈  ℕ0 ) | 
						
							| 80 | 79 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) ) | 
						
							| 81 |  | zsqcl2 | ⊢ ( 𝐺  ∈  ℤ  →  ( 𝐺 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 82 | 33 81 | syl | ⊢ ( 𝜑  →  ( 𝐺 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 83 |  | zsqcl2 | ⊢ ( 𝐻  ∈  ℤ  →  ( 𝐻 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 84 | 38 83 | syl | ⊢ ( 𝜑  →  ( 𝐻 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 85 | 82 84 | nn0addcld | ⊢ ( 𝜑  →  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ∈  ℕ0 ) | 
						
							| 86 | 85 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) | 
						
							| 87 |  | add20 | ⊢ ( ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  ∈  ℝ  ∧  0  ≤  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) ) )  ∧  ( ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  ∈  ℝ  ∧  0  ≤  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) ) )  →  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  =  0  ↔  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  =  0  ∧  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  =  0 ) ) ) | 
						
							| 88 | 31 80 42 86 87 | syl22anc | ⊢ ( 𝜑  →  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  =  0  ↔  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  =  0  ∧  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  =  0 ) ) ) | 
						
							| 89 | 74 88 | bitrd | ⊢ ( 𝜑  →  ( ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  =  0  ↔  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  =  0  ∧  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  =  0 ) ) ) | 
						
							| 90 | 89 | biimpa | ⊢ ( ( 𝜑  ∧  ( ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  +  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) ) )  /  𝑀 )  =  0 )  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  =  0  ∧  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  =  0 ) ) | 
						
							| 91 | 71 90 | syldan | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  =  0  ∧  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  =  0 ) ) | 
						
							| 92 | 91 | simpld | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  =  0 ) | 
						
							| 93 | 76 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝐸 ↑ 2 ) ) | 
						
							| 94 | 78 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝐹 ↑ 2 ) ) | 
						
							| 95 |  | add20 | ⊢ ( ( ( ( 𝐸 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝐸 ↑ 2 ) )  ∧  ( ( 𝐹 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ↑ 2 ) ) )  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  =  0  ↔  ( ( 𝐸 ↑ 2 )  =  0  ∧  ( 𝐹 ↑ 2 )  =  0 ) ) ) | 
						
							| 96 | 25 93 30 94 95 | syl22anc | ⊢ ( 𝜑  →  ( ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  =  0  ↔  ( ( 𝐸 ↑ 2 )  =  0  ∧  ( 𝐹 ↑ 2 )  =  0 ) ) ) | 
						
							| 97 | 96 | biimpa | ⊢ ( ( 𝜑  ∧  ( ( 𝐸 ↑ 2 )  +  ( 𝐹 ↑ 2 ) )  =  0 )  →  ( ( 𝐸 ↑ 2 )  =  0  ∧  ( 𝐹 ↑ 2 )  =  0 ) ) | 
						
							| 98 | 92 97 | syldan | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( ( 𝐸 ↑ 2 )  =  0  ∧  ( 𝐹 ↑ 2 )  =  0 ) ) | 
						
							| 99 | 98 | simpld | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( 𝐸 ↑ 2 )  =  0 ) | 
						
							| 100 | 9 20 13 99 | 4sqlem9 | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( 𝑀 ↑ 2 )  ∥  ( 𝐴 ↑ 2 ) ) | 
						
							| 101 | 98 | simprd | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( 𝐹 ↑ 2 )  =  0 ) | 
						
							| 102 | 10 20 14 101 | 4sqlem9 | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( 𝑀 ↑ 2 )  ∥  ( 𝐵 ↑ 2 ) ) | 
						
							| 103 | 20 | nnsqcld | ⊢ ( 𝜑  →  ( 𝑀 ↑ 2 )  ∈  ℕ ) | 
						
							| 104 | 103 | nnzd | ⊢ ( 𝜑  →  ( 𝑀 ↑ 2 )  ∈  ℤ ) | 
						
							| 105 |  | zsqcl | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴 ↑ 2 )  ∈  ℤ ) | 
						
							| 106 | 9 105 | syl | ⊢ ( 𝜑  →  ( 𝐴 ↑ 2 )  ∈  ℤ ) | 
						
							| 107 |  | zsqcl | ⊢ ( 𝐵  ∈  ℤ  →  ( 𝐵 ↑ 2 )  ∈  ℤ ) | 
						
							| 108 | 10 107 | syl | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℤ ) | 
						
							| 109 |  | dvds2add | ⊢ ( ( ( 𝑀 ↑ 2 )  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℤ  ∧  ( 𝐵 ↑ 2 )  ∈  ℤ )  →  ( ( ( 𝑀 ↑ 2 )  ∥  ( 𝐴 ↑ 2 )  ∧  ( 𝑀 ↑ 2 )  ∥  ( 𝐵 ↑ 2 ) )  →  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 110 | 104 106 108 109 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 2 )  ∥  ( 𝐴 ↑ 2 )  ∧  ( 𝑀 ↑ 2 )  ∥  ( 𝐵 ↑ 2 ) )  →  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( ( ( 𝑀 ↑ 2 )  ∥  ( 𝐴 ↑ 2 )  ∧  ( 𝑀 ↑ 2 )  ∥  ( 𝐵 ↑ 2 ) )  →  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 112 | 100 102 111 | mp2and | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 113 | 91 | simprd | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  =  0 ) | 
						
							| 114 | 82 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝐺 ↑ 2 ) ) | 
						
							| 115 | 84 | nn0ge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝐻 ↑ 2 ) ) | 
						
							| 116 |  | add20 | ⊢ ( ( ( ( 𝐺 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝐺 ↑ 2 ) )  ∧  ( ( 𝐻 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝐻 ↑ 2 ) ) )  →  ( ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  =  0  ↔  ( ( 𝐺 ↑ 2 )  =  0  ∧  ( 𝐻 ↑ 2 )  =  0 ) ) ) | 
						
							| 117 | 36 114 41 115 116 | syl22anc | ⊢ ( 𝜑  →  ( ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  =  0  ↔  ( ( 𝐺 ↑ 2 )  =  0  ∧  ( 𝐻 ↑ 2 )  =  0 ) ) ) | 
						
							| 118 | 117 | biimpa | ⊢ ( ( 𝜑  ∧  ( ( 𝐺 ↑ 2 )  +  ( 𝐻 ↑ 2 ) )  =  0 )  →  ( ( 𝐺 ↑ 2 )  =  0  ∧  ( 𝐻 ↑ 2 )  =  0 ) ) | 
						
							| 119 | 113 118 | syldan | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( ( 𝐺 ↑ 2 )  =  0  ∧  ( 𝐻 ↑ 2 )  =  0 ) ) | 
						
							| 120 | 119 | simpld | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( 𝐺 ↑ 2 )  =  0 ) | 
						
							| 121 | 11 20 15 120 | 4sqlem9 | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( 𝑀 ↑ 2 )  ∥  ( 𝐶 ↑ 2 ) ) | 
						
							| 122 | 119 | simprd | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( 𝐻 ↑ 2 )  =  0 ) | 
						
							| 123 | 12 20 16 122 | 4sqlem9 | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( 𝑀 ↑ 2 )  ∥  ( 𝐷 ↑ 2 ) ) | 
						
							| 124 |  | zsqcl | ⊢ ( 𝐶  ∈  ℤ  →  ( 𝐶 ↑ 2 )  ∈  ℤ ) | 
						
							| 125 | 11 124 | syl | ⊢ ( 𝜑  →  ( 𝐶 ↑ 2 )  ∈  ℤ ) | 
						
							| 126 |  | zsqcl | ⊢ ( 𝐷  ∈  ℤ  →  ( 𝐷 ↑ 2 )  ∈  ℤ ) | 
						
							| 127 | 12 126 | syl | ⊢ ( 𝜑  →  ( 𝐷 ↑ 2 )  ∈  ℤ ) | 
						
							| 128 |  | dvds2add | ⊢ ( ( ( 𝑀 ↑ 2 )  ∈  ℤ  ∧  ( 𝐶 ↑ 2 )  ∈  ℤ  ∧  ( 𝐷 ↑ 2 )  ∈  ℤ )  →  ( ( ( 𝑀 ↑ 2 )  ∥  ( 𝐶 ↑ 2 )  ∧  ( 𝑀 ↑ 2 )  ∥  ( 𝐷 ↑ 2 ) )  →  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) | 
						
							| 129 | 104 125 127 128 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 2 )  ∥  ( 𝐶 ↑ 2 )  ∧  ( 𝑀 ↑ 2 )  ∥  ( 𝐷 ↑ 2 ) )  →  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( ( ( 𝑀 ↑ 2 )  ∥  ( 𝐶 ↑ 2 )  ∧  ( 𝑀 ↑ 2 )  ∥  ( 𝐷 ↑ 2 ) )  →  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) | 
						
							| 131 | 121 123 130 | mp2and | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) | 
						
							| 132 | 106 108 | zaddcld | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∈  ℤ ) | 
						
							| 133 | 125 127 | zaddcld | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  ∈  ℤ ) | 
						
							| 134 |  | dvds2add | ⊢ ( ( ( 𝑀 ↑ 2 )  ∈  ℤ  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∈  ℤ  ∧  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  ∈  ℤ )  →  ( ( ( 𝑀 ↑ 2 )  ∥  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∧  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  →  ( 𝑀 ↑ 2 )  ∥  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) ) | 
						
							| 135 | 104 132 133 134 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 2 )  ∥  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∧  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  →  ( 𝑀 ↑ 2 )  ∥  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( ( ( 𝑀 ↑ 2 )  ∥  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∧  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  →  ( 𝑀 ↑ 2 )  ∥  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) ) | 
						
							| 137 | 112 131 136 | mp2and | ⊢ ( ( 𝜑  ∧  𝑅  =  0 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) | 
						
							| 138 | 104 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∈  ℤ ) | 
						
							| 139 | 132 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∈  ℤ ) | 
						
							| 140 | 51 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  =  ( ( 𝑀 ↑ 2 )  /  2 ) ) | 
						
							| 141 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 4sqlem15 | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) )  =  0 )  ∧  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) )  =  0 ) ) ) | 
						
							| 142 | 141 | simpld | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) )  =  0 ) ) | 
						
							| 143 | 142 | simpld | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  =  0 ) | 
						
							| 144 | 46 | recnd | ⊢ ( 𝜑  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  ∈  ℂ ) | 
						
							| 145 | 24 | zcnd | ⊢ ( 𝜑  →  ( 𝐸 ↑ 2 )  ∈  ℂ ) | 
						
							| 146 | 144 145 | subeq0ad | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  =  0  ↔  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  =  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 147 | 146 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐸 ↑ 2 ) )  =  0  ↔  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  =  ( 𝐸 ↑ 2 ) ) ) | 
						
							| 148 | 143 147 | mpbid | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  =  ( 𝐸 ↑ 2 ) ) | 
						
							| 149 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝐸 ↑ 2 )  ∈  ℤ ) | 
						
							| 150 | 148 149 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  ∈  ℤ ) | 
						
							| 151 | 150 150 | zaddcld | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  ∈  ℤ ) | 
						
							| 152 | 140 151 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( 𝑀 ↑ 2 )  /  2 )  ∈  ℤ ) | 
						
							| 153 | 139 152 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) )  ∈  ℤ ) | 
						
							| 154 | 133 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  ∈  ℤ ) | 
						
							| 155 | 154 152 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) )  ∈  ℤ ) | 
						
							| 156 | 106 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝐴 ↑ 2 )  ∈  ℤ ) | 
						
							| 157 | 156 150 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( 𝐴 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  ∈  ℤ ) | 
						
							| 158 | 108 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝐵 ↑ 2 )  ∈  ℤ ) | 
						
							| 159 | 158 150 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( 𝐵 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  ∈  ℤ ) | 
						
							| 160 | 9 20 13 143 | 4sqlem10 | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐴 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) | 
						
							| 161 | 142 | simprd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐹 ↑ 2 ) )  =  0 ) | 
						
							| 162 | 10 20 14 161 | 4sqlem10 | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐵 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) | 
						
							| 163 | 138 157 159 160 162 | dvds2addd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( ( 𝐴 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  +  ( ( 𝐵 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) ) | 
						
							| 164 | 106 | zcnd | ⊢ ( 𝜑  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 165 | 108 | zcnd | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℂ ) | 
						
							| 166 | 164 165 144 144 | addsub4d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  +  ( ( 𝐵 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) ) | 
						
							| 167 | 51 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) | 
						
							| 168 | 166 167 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  +  ( ( 𝐵 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) | 
						
							| 169 | 168 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( 𝐴 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  +  ( ( 𝐵 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) | 
						
							| 170 | 163 169 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) | 
						
							| 171 | 125 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝐶 ↑ 2 )  ∈  ℤ ) | 
						
							| 172 | 171 150 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( 𝐶 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  ∈  ℤ ) | 
						
							| 173 | 127 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝐷 ↑ 2 )  ∈  ℤ ) | 
						
							| 174 | 173 150 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( 𝐷 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  ∈  ℤ ) | 
						
							| 175 | 141 | simprd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  =  0  ∧  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) )  =  0 ) ) | 
						
							| 176 | 175 | simpld | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐺 ↑ 2 ) )  =  0 ) | 
						
							| 177 | 11 20 15 176 | 4sqlem10 | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐶 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) | 
						
							| 178 | 175 | simprd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  −  ( 𝐻 ↑ 2 ) )  =  0 ) | 
						
							| 179 | 12 20 16 178 | 4sqlem10 | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( 𝐷 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) | 
						
							| 180 | 138 172 174 177 179 | dvds2addd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( ( 𝐶 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  +  ( ( 𝐷 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) ) | 
						
							| 181 | 125 | zcnd | ⊢ ( 𝜑  →  ( 𝐶 ↑ 2 )  ∈  ℂ ) | 
						
							| 182 | 127 | zcnd | ⊢ ( 𝜑  →  ( 𝐷 ↑ 2 )  ∈  ℂ ) | 
						
							| 183 | 181 182 144 144 | addsub4d | ⊢ ( 𝜑  →  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( 𝐶 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  +  ( ( 𝐷 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) ) ) | 
						
							| 184 | 51 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 )  +  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) | 
						
							| 185 | 183 184 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( 𝐶 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  +  ( ( 𝐷 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) | 
						
							| 186 | 185 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( 𝐶 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) )  +  ( ( 𝐷 ↑ 2 )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) | 
						
							| 187 | 180 186 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) | 
						
							| 188 | 138 153 155 170 187 | dvds2addd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) )  +  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) ) | 
						
							| 189 | 132 | zcnd | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 190 | 133 | zcnd | ⊢ ( 𝜑  →  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 191 | 189 190 50 50 | addsub4d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  +  ( ( 𝑀 ↑ 2 )  /  2 ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) )  +  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) ) ) ) | 
						
							| 192 | 59 | oveq2d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  −  ( ( ( 𝑀 ↑ 2 )  /  2 )  +  ( ( 𝑀 ↑ 2 )  /  2 ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  −  ( 𝑀 ↑ 2 ) ) ) | 
						
							| 193 | 191 192 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) )  +  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  −  ( 𝑀 ↑ 2 ) ) ) | 
						
							| 194 | 193 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) )  +  ( ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) )  −  ( ( 𝑀 ↑ 2 )  /  2 ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  −  ( 𝑀 ↑ 2 ) ) ) | 
						
							| 195 | 188 194 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  −  ( 𝑀 ↑ 2 ) ) ) | 
						
							| 196 | 132 133 | zaddcld | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  ∈  ℤ ) | 
						
							| 197 | 196 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  ∈  ℤ ) | 
						
							| 198 |  | dvdssubr | ⊢ ( ( ( 𝑀 ↑ 2 )  ∈  ℤ  ∧  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  ∈  ℤ )  →  ( ( 𝑀 ↑ 2 )  ∥  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  ↔  ( 𝑀 ↑ 2 )  ∥  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  −  ( 𝑀 ↑ 2 ) ) ) ) | 
						
							| 199 | 138 197 198 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( ( 𝑀 ↑ 2 )  ∥  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  ↔  ( 𝑀 ↑ 2 )  ∥  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) )  −  ( 𝑀 ↑ 2 ) ) ) ) | 
						
							| 200 | 195 199 | mpbird | ⊢ ( ( 𝜑  ∧  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) | 
						
							| 201 | 137 200 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑅  =  0  ∨  𝑅  =  𝑀 ) )  →  ( 𝑀 ↑ 2 )  ∥  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) | 
						
							| 202 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑅  =  0  ∨  𝑅  =  𝑀 ) )  →  ( 𝑀  ·  𝑃 )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  +  ( ( 𝐶 ↑ 2 )  +  ( 𝐷 ↑ 2 ) ) ) ) | 
						
							| 203 | 201 202 | breqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑅  =  0  ∨  𝑅  =  𝑀 ) )  →  ( 𝑀 ↑ 2 )  ∥  ( 𝑀  ·  𝑃 ) ) | 
						
							| 204 | 203 | ex | ⊢ ( 𝜑  →  ( ( 𝑅  =  0  ∨  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( 𝑀  ·  𝑃 ) ) ) | 
						
							| 205 | 69 204 | jca | ⊢ ( 𝜑  →  ( 𝑅  ≤  𝑀  ∧  ( ( 𝑅  =  0  ∨  𝑅  =  𝑀 )  →  ( 𝑀 ↑ 2 )  ∥  ( 𝑀  ·  𝑃 ) ) ) ) |