Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } |
2 |
|
4sq.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
4sq.3 |
⊢ ( 𝜑 → 𝑃 = ( ( 2 · 𝑁 ) + 1 ) ) |
4 |
|
4sq.4 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
4sq.5 |
⊢ ( 𝜑 → ( 0 ... ( 2 · 𝑁 ) ) ⊆ 𝑆 ) |
6 |
|
4sq.6 |
⊢ 𝑇 = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑃 ) ∈ 𝑆 } |
7 |
|
4sq.7 |
⊢ 𝑀 = inf ( 𝑇 , ℝ , < ) |
8 |
|
4sq.m |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
9 |
|
4sq.a |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
10 |
|
4sq.b |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
11 |
|
4sq.c |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
12 |
|
4sq.d |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
13 |
|
4sq.e |
⊢ 𝐸 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
14 |
|
4sq.f |
⊢ 𝐹 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
15 |
|
4sq.g |
⊢ 𝐺 = ( ( ( 𝐶 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
16 |
|
4sq.h |
⊢ 𝐻 = ( ( ( 𝐷 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
17 |
|
4sq.r |
⊢ 𝑅 = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) |
18 |
|
4sq.p |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
4sqlem16 |
⊢ ( 𝜑 → ( 𝑅 ≤ 𝑀 ∧ ( ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) ) |
20 |
19
|
simpld |
⊢ ( 𝜑 → 𝑅 ≤ 𝑀 ) |
21 |
6
|
ssrab3 |
⊢ 𝑇 ⊆ ℕ |
22 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
23 |
21 22
|
sseqtri |
⊢ 𝑇 ⊆ ( ℤ≥ ‘ 1 ) |
24 |
1 2 3 4 5 6 7
|
4sqlem13 |
⊢ ( 𝜑 → ( 𝑇 ≠ ∅ ∧ 𝑀 < 𝑃 ) ) |
25 |
24
|
simpld |
⊢ ( 𝜑 → 𝑇 ≠ ∅ ) |
26 |
|
infssuzcl |
⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
27 |
23 25 26
|
sylancr |
⊢ ( 𝜑 → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 ) |
28 |
7 27
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ 𝑇 ) |
29 |
21 28
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
30 |
29
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
31 |
24
|
simprd |
⊢ ( 𝜑 → 𝑀 < 𝑃 ) |
32 |
30 31
|
ltned |
⊢ ( 𝜑 → 𝑀 ≠ 𝑃 ) |
33 |
29
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
34 |
33
|
sqvald |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) = ( 𝑀 · 𝑀 ) ) |
35 |
34
|
breq1d |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ↔ ( 𝑀 · 𝑀 ) ∥ ( 𝑀 · 𝑃 ) ) ) |
36 |
29
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
37 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
38 |
4 37
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
39 |
29
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
40 |
|
dvdscmulr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → ( ( 𝑀 · 𝑀 ) ∥ ( 𝑀 · 𝑃 ) ↔ 𝑀 ∥ 𝑃 ) ) |
41 |
36 38 36 39 40
|
syl112anc |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑀 ) ∥ ( 𝑀 · 𝑃 ) ↔ 𝑀 ∥ 𝑃 ) ) |
42 |
|
dvdsprm |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑀 ∥ 𝑃 ↔ 𝑀 = 𝑃 ) ) |
43 |
8 4 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ∥ 𝑃 ↔ 𝑀 = 𝑃 ) ) |
44 |
35 41 43
|
3bitrd |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ↔ 𝑀 = 𝑃 ) ) |
45 |
44
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ↔ 𝑀 ≠ 𝑃 ) ) |
46 |
32 45
|
mpbird |
⊢ ( 𝜑 → ¬ ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) |
47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
4sqlem14 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
48 |
|
elnn0 |
⊢ ( 𝑅 ∈ ℕ0 ↔ ( 𝑅 ∈ ℕ ∨ 𝑅 = 0 ) ) |
49 |
47 48
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ ℕ ∨ 𝑅 = 0 ) ) |
50 |
49
|
ord |
⊢ ( 𝜑 → ( ¬ 𝑅 ∈ ℕ → 𝑅 = 0 ) ) |
51 |
|
orc |
⊢ ( 𝑅 = 0 → ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) ) |
52 |
19
|
simprd |
⊢ ( 𝜑 → ( ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) |
53 |
51 52
|
syl5 |
⊢ ( 𝜑 → ( 𝑅 = 0 → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) |
54 |
50 53
|
syld |
⊢ ( 𝜑 → ( ¬ 𝑅 ∈ ℕ → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) ) |
55 |
46 54
|
mt3d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
56 |
|
gzreim |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℤ[i] ) |
57 |
9 10 56
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℤ[i] ) |
58 |
|
gzcn |
⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℤ[i] → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
59 |
57 58
|
syl |
⊢ ( 𝜑 → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
60 |
59
|
absvalsq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) ) ) |
61 |
9
|
zred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
62 |
10
|
zred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
63 |
61 62
|
crred |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐴 ) |
64 |
63
|
oveq1d |
⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
65 |
61 62
|
crimd |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐵 ) |
66 |
65
|
oveq1d |
⊢ ( 𝜑 → ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
67 |
64 66
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
68 |
60 67
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
69 |
|
gzreim |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐶 + ( i · 𝐷 ) ) ∈ ℤ[i] ) |
70 |
11 12 69
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 + ( i · 𝐷 ) ) ∈ ℤ[i] ) |
71 |
|
gzcn |
⊢ ( ( 𝐶 + ( i · 𝐷 ) ) ∈ ℤ[i] → ( 𝐶 + ( i · 𝐷 ) ) ∈ ℂ ) |
72 |
70 71
|
syl |
⊢ ( 𝜑 → ( 𝐶 + ( i · 𝐷 ) ) ∈ ℂ ) |
73 |
72
|
absvalsq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) ) |
74 |
11
|
zred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
75 |
12
|
zred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
76 |
74 75
|
crred |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) = 𝐶 ) |
77 |
76
|
oveq1d |
⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) = ( 𝐶 ↑ 2 ) ) |
78 |
74 75
|
crimd |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) = 𝐷 ) |
79 |
78
|
oveq1d |
⊢ ( 𝜑 → ( ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) = ( 𝐷 ↑ 2 ) ) |
80 |
77 79
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
81 |
73 80
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) = ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
82 |
68 81
|
oveq12d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
83 |
18 82
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 · 𝑃 ) = ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) ) |
84 |
83
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) / 𝑀 ) = ( ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) / 𝑀 ) ) |
85 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
86 |
4 85
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
87 |
86
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
88 |
87 33 39
|
divcan3d |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑃 ) / 𝑀 ) = 𝑃 ) |
89 |
84 88
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) / 𝑀 ) = 𝑃 ) |
90 |
9 29 13
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐸 ∈ ℤ ∧ ( ( 𝐴 − 𝐸 ) / 𝑀 ) ∈ ℤ ) ) |
91 |
90
|
simpld |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
92 |
10 29 14
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐹 ∈ ℤ ∧ ( ( 𝐵 − 𝐹 ) / 𝑀 ) ∈ ℤ ) ) |
93 |
92
|
simpld |
⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
94 |
|
gzreim |
⊢ ( ( 𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ ) → ( 𝐸 + ( i · 𝐹 ) ) ∈ ℤ[i] ) |
95 |
91 93 94
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 + ( i · 𝐹 ) ) ∈ ℤ[i] ) |
96 |
|
gzcn |
⊢ ( ( 𝐸 + ( i · 𝐹 ) ) ∈ ℤ[i] → ( 𝐸 + ( i · 𝐹 ) ) ∈ ℂ ) |
97 |
95 96
|
syl |
⊢ ( 𝜑 → ( 𝐸 + ( i · 𝐹 ) ) ∈ ℂ ) |
98 |
97
|
absvalsq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) ) ) |
99 |
91
|
zred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
100 |
93
|
zred |
⊢ ( 𝜑 → 𝐹 ∈ ℝ ) |
101 |
99 100
|
crred |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) = 𝐸 ) |
102 |
101
|
oveq1d |
⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) = ( 𝐸 ↑ 2 ) ) |
103 |
99 100
|
crimd |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) = 𝐹 ) |
104 |
103
|
oveq1d |
⊢ ( 𝜑 → ( ( ℑ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) = ( 𝐹 ↑ 2 ) ) |
105 |
102 104
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ℜ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
106 |
98 105
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
107 |
11 29 15
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐺 ∈ ℤ ∧ ( ( 𝐶 − 𝐺 ) / 𝑀 ) ∈ ℤ ) ) |
108 |
107
|
simpld |
⊢ ( 𝜑 → 𝐺 ∈ ℤ ) |
109 |
12 29 16
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐻 ∈ ℤ ∧ ( ( 𝐷 − 𝐻 ) / 𝑀 ) ∈ ℤ ) ) |
110 |
109
|
simpld |
⊢ ( 𝜑 → 𝐻 ∈ ℤ ) |
111 |
|
gzreim |
⊢ ( ( 𝐺 ∈ ℤ ∧ 𝐻 ∈ ℤ ) → ( 𝐺 + ( i · 𝐻 ) ) ∈ ℤ[i] ) |
112 |
108 110 111
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 + ( i · 𝐻 ) ) ∈ ℤ[i] ) |
113 |
|
gzcn |
⊢ ( ( 𝐺 + ( i · 𝐻 ) ) ∈ ℤ[i] → ( 𝐺 + ( i · 𝐻 ) ) ∈ ℂ ) |
114 |
112 113
|
syl |
⊢ ( 𝜑 → ( 𝐺 + ( i · 𝐻 ) ) ∈ ℂ ) |
115 |
114
|
absvalsq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) ) |
116 |
108
|
zred |
⊢ ( 𝜑 → 𝐺 ∈ ℝ ) |
117 |
110
|
zred |
⊢ ( 𝜑 → 𝐻 ∈ ℝ ) |
118 |
116 117
|
crred |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) = 𝐺 ) |
119 |
118
|
oveq1d |
⊢ ( 𝜑 → ( ( ℜ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) = ( 𝐺 ↑ 2 ) ) |
120 |
116 117
|
crimd |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) = 𝐻 ) |
121 |
120
|
oveq1d |
⊢ ( 𝜑 → ( ( ℑ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) = ( 𝐻 ↑ 2 ) ) |
122 |
119 121
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ℜ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) = ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) |
123 |
115 122
|
eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) = ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) |
124 |
106 123
|
oveq12d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) = ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) ) |
125 |
124
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) / 𝑀 ) = ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) + ( ( 𝐺 ↑ 2 ) + ( 𝐻 ↑ 2 ) ) ) / 𝑀 ) ) |
126 |
125 17
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) / 𝑀 ) = 𝑅 ) |
127 |
89 126
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) / 𝑀 ) · ( ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) / 𝑀 ) ) = ( 𝑃 · 𝑅 ) ) |
128 |
55
|
nncnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
129 |
87 128
|
mulcomd |
⊢ ( 𝜑 → ( 𝑃 · 𝑅 ) = ( 𝑅 · 𝑃 ) ) |
130 |
127 129
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) / 𝑀 ) · ( ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) / 𝑀 ) ) = ( 𝑅 · 𝑃 ) ) |
131 |
|
eqid |
⊢ ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) = ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) |
132 |
|
eqid |
⊢ ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) = ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) |
133 |
9
|
zcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
134 |
|
ax-icn |
⊢ i ∈ ℂ |
135 |
10
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
136 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) |
137 |
134 135 136
|
sylancr |
⊢ ( 𝜑 → ( i · 𝐵 ) ∈ ℂ ) |
138 |
91
|
zcnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
139 |
93
|
zcnd |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
140 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐹 ∈ ℂ ) → ( i · 𝐹 ) ∈ ℂ ) |
141 |
134 139 140
|
sylancr |
⊢ ( 𝜑 → ( i · 𝐹 ) ∈ ℂ ) |
142 |
133 137 138 141
|
addsub4d |
⊢ ( 𝜑 → ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐸 + ( i · 𝐹 ) ) ) = ( ( 𝐴 − 𝐸 ) + ( ( i · 𝐵 ) − ( i · 𝐹 ) ) ) ) |
143 |
134
|
a1i |
⊢ ( 𝜑 → i ∈ ℂ ) |
144 |
143 135 139
|
subdid |
⊢ ( 𝜑 → ( i · ( 𝐵 − 𝐹 ) ) = ( ( i · 𝐵 ) − ( i · 𝐹 ) ) ) |
145 |
144
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐸 ) + ( i · ( 𝐵 − 𝐹 ) ) ) = ( ( 𝐴 − 𝐸 ) + ( ( i · 𝐵 ) − ( i · 𝐹 ) ) ) ) |
146 |
142 145
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐸 + ( i · 𝐹 ) ) ) = ( ( 𝐴 − 𝐸 ) + ( i · ( 𝐵 − 𝐹 ) ) ) ) |
147 |
146
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐸 + ( i · 𝐹 ) ) ) / 𝑀 ) = ( ( ( 𝐴 − 𝐸 ) + ( i · ( 𝐵 − 𝐹 ) ) ) / 𝑀 ) ) |
148 |
133 138
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐸 ) ∈ ℂ ) |
149 |
135 139
|
subcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐹 ) ∈ ℂ ) |
150 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 𝐵 − 𝐹 ) ∈ ℂ ) → ( i · ( 𝐵 − 𝐹 ) ) ∈ ℂ ) |
151 |
134 149 150
|
sylancr |
⊢ ( 𝜑 → ( i · ( 𝐵 − 𝐹 ) ) ∈ ℂ ) |
152 |
148 151 33 39
|
divdird |
⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐸 ) + ( i · ( 𝐵 − 𝐹 ) ) ) / 𝑀 ) = ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) + ( ( i · ( 𝐵 − 𝐹 ) ) / 𝑀 ) ) ) |
153 |
143 149 33 39
|
divassd |
⊢ ( 𝜑 → ( ( i · ( 𝐵 − 𝐹 ) ) / 𝑀 ) = ( i · ( ( 𝐵 − 𝐹 ) / 𝑀 ) ) ) |
154 |
153
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) + ( ( i · ( 𝐵 − 𝐹 ) ) / 𝑀 ) ) = ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) + ( i · ( ( 𝐵 − 𝐹 ) / 𝑀 ) ) ) ) |
155 |
147 152 154
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐸 + ( i · 𝐹 ) ) ) / 𝑀 ) = ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) + ( i · ( ( 𝐵 − 𝐹 ) / 𝑀 ) ) ) ) |
156 |
90
|
simprd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐸 ) / 𝑀 ) ∈ ℤ ) |
157 |
92
|
simprd |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐹 ) / 𝑀 ) ∈ ℤ ) |
158 |
|
gzreim |
⊢ ( ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) ∈ ℤ ∧ ( ( 𝐵 − 𝐹 ) / 𝑀 ) ∈ ℤ ) → ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) + ( i · ( ( 𝐵 − 𝐹 ) / 𝑀 ) ) ) ∈ ℤ[i] ) |
159 |
156 157 158
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐸 ) / 𝑀 ) + ( i · ( ( 𝐵 − 𝐹 ) / 𝑀 ) ) ) ∈ ℤ[i] ) |
160 |
155 159
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝐴 + ( i · 𝐵 ) ) − ( 𝐸 + ( i · 𝐹 ) ) ) / 𝑀 ) ∈ ℤ[i] ) |
161 |
11
|
zcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
162 |
12
|
zcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
163 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( i · 𝐷 ) ∈ ℂ ) |
164 |
134 162 163
|
sylancr |
⊢ ( 𝜑 → ( i · 𝐷 ) ∈ ℂ ) |
165 |
108
|
zcnd |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
166 |
110
|
zcnd |
⊢ ( 𝜑 → 𝐻 ∈ ℂ ) |
167 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐻 ∈ ℂ ) → ( i · 𝐻 ) ∈ ℂ ) |
168 |
134 166 167
|
sylancr |
⊢ ( 𝜑 → ( i · 𝐻 ) ∈ ℂ ) |
169 |
161 164 165 168
|
addsub4d |
⊢ ( 𝜑 → ( ( 𝐶 + ( i · 𝐷 ) ) − ( 𝐺 + ( i · 𝐻 ) ) ) = ( ( 𝐶 − 𝐺 ) + ( ( i · 𝐷 ) − ( i · 𝐻 ) ) ) ) |
170 |
143 162 166
|
subdid |
⊢ ( 𝜑 → ( i · ( 𝐷 − 𝐻 ) ) = ( ( i · 𝐷 ) − ( i · 𝐻 ) ) ) |
171 |
170
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐶 − 𝐺 ) + ( i · ( 𝐷 − 𝐻 ) ) ) = ( ( 𝐶 − 𝐺 ) + ( ( i · 𝐷 ) − ( i · 𝐻 ) ) ) ) |
172 |
169 171
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐶 + ( i · 𝐷 ) ) − ( 𝐺 + ( i · 𝐻 ) ) ) = ( ( 𝐶 − 𝐺 ) + ( i · ( 𝐷 − 𝐻 ) ) ) ) |
173 |
172
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐶 + ( i · 𝐷 ) ) − ( 𝐺 + ( i · 𝐻 ) ) ) / 𝑀 ) = ( ( ( 𝐶 − 𝐺 ) + ( i · ( 𝐷 − 𝐻 ) ) ) / 𝑀 ) ) |
174 |
161 165
|
subcld |
⊢ ( 𝜑 → ( 𝐶 − 𝐺 ) ∈ ℂ ) |
175 |
162 166
|
subcld |
⊢ ( 𝜑 → ( 𝐷 − 𝐻 ) ∈ ℂ ) |
176 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( 𝐷 − 𝐻 ) ∈ ℂ ) → ( i · ( 𝐷 − 𝐻 ) ) ∈ ℂ ) |
177 |
134 175 176
|
sylancr |
⊢ ( 𝜑 → ( i · ( 𝐷 − 𝐻 ) ) ∈ ℂ ) |
178 |
174 177 33 39
|
divdird |
⊢ ( 𝜑 → ( ( ( 𝐶 − 𝐺 ) + ( i · ( 𝐷 − 𝐻 ) ) ) / 𝑀 ) = ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) + ( ( i · ( 𝐷 − 𝐻 ) ) / 𝑀 ) ) ) |
179 |
143 175 33 39
|
divassd |
⊢ ( 𝜑 → ( ( i · ( 𝐷 − 𝐻 ) ) / 𝑀 ) = ( i · ( ( 𝐷 − 𝐻 ) / 𝑀 ) ) ) |
180 |
179
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) + ( ( i · ( 𝐷 − 𝐻 ) ) / 𝑀 ) ) = ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) + ( i · ( ( 𝐷 − 𝐻 ) / 𝑀 ) ) ) ) |
181 |
173 178 180
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐶 + ( i · 𝐷 ) ) − ( 𝐺 + ( i · 𝐻 ) ) ) / 𝑀 ) = ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) + ( i · ( ( 𝐷 − 𝐻 ) / 𝑀 ) ) ) ) |
182 |
107
|
simprd |
⊢ ( 𝜑 → ( ( 𝐶 − 𝐺 ) / 𝑀 ) ∈ ℤ ) |
183 |
109
|
simprd |
⊢ ( 𝜑 → ( ( 𝐷 − 𝐻 ) / 𝑀 ) ∈ ℤ ) |
184 |
|
gzreim |
⊢ ( ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) ∈ ℤ ∧ ( ( 𝐷 − 𝐻 ) / 𝑀 ) ∈ ℤ ) → ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) + ( i · ( ( 𝐷 − 𝐻 ) / 𝑀 ) ) ) ∈ ℤ[i] ) |
185 |
182 183 184
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐶 − 𝐺 ) / 𝑀 ) + ( i · ( ( 𝐷 − 𝐻 ) / 𝑀 ) ) ) ∈ ℤ[i] ) |
186 |
181 185
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝐶 + ( i · 𝐷 ) ) − ( 𝐺 + ( i · 𝐻 ) ) ) / 𝑀 ) ∈ ℤ[i] ) |
187 |
86
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
188 |
89 187
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) / 𝑀 ) ∈ ℕ0 ) |
189 |
1 57 70 95 112 131 132 29 160 186 188
|
mul4sqlem |
⊢ ( 𝜑 → ( ( ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) / 𝑀 ) · ( ( ( ( abs ‘ ( 𝐸 + ( i · 𝐹 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝐺 + ( i · 𝐻 ) ) ) ↑ 2 ) ) / 𝑀 ) ) ∈ 𝑆 ) |
190 |
130 189
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑅 · 𝑃 ) ∈ 𝑆 ) |
191 |
|
oveq1 |
⊢ ( 𝑖 = 𝑅 → ( 𝑖 · 𝑃 ) = ( 𝑅 · 𝑃 ) ) |
192 |
191
|
eleq1d |
⊢ ( 𝑖 = 𝑅 → ( ( 𝑖 · 𝑃 ) ∈ 𝑆 ↔ ( 𝑅 · 𝑃 ) ∈ 𝑆 ) ) |
193 |
192 6
|
elrab2 |
⊢ ( 𝑅 ∈ 𝑇 ↔ ( 𝑅 ∈ ℕ ∧ ( 𝑅 · 𝑃 ) ∈ 𝑆 ) ) |
194 |
55 190 193
|
sylanbrc |
⊢ ( 𝜑 → 𝑅 ∈ 𝑇 ) |
195 |
|
infssuzle |
⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑅 ∈ 𝑇 ) → inf ( 𝑇 , ℝ , < ) ≤ 𝑅 ) |
196 |
23 194 195
|
sylancr |
⊢ ( 𝜑 → inf ( 𝑇 , ℝ , < ) ≤ 𝑅 ) |
197 |
7 196
|
eqbrtrid |
⊢ ( 𝜑 → 𝑀 ≤ 𝑅 ) |
198 |
55
|
nnred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
199 |
198 30
|
letri3d |
⊢ ( 𝜑 → ( 𝑅 = 𝑀 ↔ ( 𝑅 ≤ 𝑀 ∧ 𝑀 ≤ 𝑅 ) ) ) |
200 |
20 197 199
|
mpbir2and |
⊢ ( 𝜑 → 𝑅 = 𝑀 ) |
201 |
200
|
olcd |
⊢ ( 𝜑 → ( 𝑅 = 0 ∨ 𝑅 = 𝑀 ) ) |
202 |
201 52
|
mpd |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∥ ( 𝑀 · 𝑃 ) ) |
203 |
202 46
|
pm2.65i |
⊢ ¬ 𝜑 |