Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } |
2 |
|
elnn0 |
⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
3 |
|
eleq1 |
⊢ ( 𝑗 = 1 → ( 𝑗 ∈ 𝑆 ↔ 1 ∈ 𝑆 ) ) |
4 |
|
eleq1 |
⊢ ( 𝑗 = 𝑚 → ( 𝑗 ∈ 𝑆 ↔ 𝑚 ∈ 𝑆 ) ) |
5 |
|
eleq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∈ 𝑆 ↔ 𝑖 ∈ 𝑆 ) ) |
6 |
|
eleq1 |
⊢ ( 𝑗 = ( 𝑚 · 𝑖 ) → ( 𝑗 ∈ 𝑆 ↔ ( 𝑚 · 𝑖 ) ∈ 𝑆 ) ) |
7 |
|
eleq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ 𝑆 ↔ 𝑘 ∈ 𝑆 ) ) |
8 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
9 |
8
|
oveq1i |
⊢ ( ( abs ‘ 1 ) ↑ 2 ) = ( 1 ↑ 2 ) |
10 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
11 |
9 10
|
eqtri |
⊢ ( ( abs ‘ 1 ) ↑ 2 ) = 1 |
12 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
13 |
12
|
oveq1i |
⊢ ( ( abs ‘ 0 ) ↑ 2 ) = ( 0 ↑ 2 ) |
14 |
|
sq0 |
⊢ ( 0 ↑ 2 ) = 0 |
15 |
13 14
|
eqtri |
⊢ ( ( abs ‘ 0 ) ↑ 2 ) = 0 |
16 |
11 15
|
oveq12i |
⊢ ( ( ( abs ‘ 1 ) ↑ 2 ) + ( ( abs ‘ 0 ) ↑ 2 ) ) = ( 1 + 0 ) |
17 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
18 |
16 17
|
eqtri |
⊢ ( ( ( abs ‘ 1 ) ↑ 2 ) + ( ( abs ‘ 0 ) ↑ 2 ) ) = 1 |
19 |
|
1z |
⊢ 1 ∈ ℤ |
20 |
|
zgz |
⊢ ( 1 ∈ ℤ → 1 ∈ ℤ[i] ) |
21 |
19 20
|
ax-mp |
⊢ 1 ∈ ℤ[i] |
22 |
|
0z |
⊢ 0 ∈ ℤ |
23 |
|
zgz |
⊢ ( 0 ∈ ℤ → 0 ∈ ℤ[i] ) |
24 |
22 23
|
ax-mp |
⊢ 0 ∈ ℤ[i] |
25 |
1
|
4sqlem4a |
⊢ ( ( 1 ∈ ℤ[i] ∧ 0 ∈ ℤ[i] ) → ( ( ( abs ‘ 1 ) ↑ 2 ) + ( ( abs ‘ 0 ) ↑ 2 ) ) ∈ 𝑆 ) |
26 |
21 24 25
|
mp2an |
⊢ ( ( ( abs ‘ 1 ) ↑ 2 ) + ( ( abs ‘ 0 ) ↑ 2 ) ) ∈ 𝑆 |
27 |
18 26
|
eqeltrri |
⊢ 1 ∈ 𝑆 |
28 |
|
eleq1 |
⊢ ( 𝑗 = 2 → ( 𝑗 ∈ 𝑆 ↔ 2 ∈ 𝑆 ) ) |
29 |
|
eldifsn |
⊢ ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑗 ∈ ℙ ∧ 𝑗 ≠ 2 ) ) |
30 |
|
oddprm |
⊢ ( 𝑗 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑗 − 1 ) / 2 ) ∈ ℕ ) |
31 |
30
|
adantr |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( ( 𝑗 − 1 ) / 2 ) ∈ ℕ ) |
32 |
|
eldifi |
⊢ ( 𝑗 ∈ ( ℙ ∖ { 2 } ) → 𝑗 ∈ ℙ ) |
33 |
32
|
adantr |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → 𝑗 ∈ ℙ ) |
34 |
|
prmnn |
⊢ ( 𝑗 ∈ ℙ → 𝑗 ∈ ℕ ) |
35 |
|
nncn |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) |
36 |
33 34 35
|
3syl |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → 𝑗 ∈ ℂ ) |
37 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
38 |
|
subcl |
⊢ ( ( 𝑗 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑗 − 1 ) ∈ ℂ ) |
39 |
36 37 38
|
sylancl |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( 𝑗 − 1 ) ∈ ℂ ) |
40 |
|
2cnd |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → 2 ∈ ℂ ) |
41 |
|
2ne0 |
⊢ 2 ≠ 0 |
42 |
41
|
a1i |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → 2 ≠ 0 ) |
43 |
39 40 42
|
divcan2d |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( 2 · ( ( 𝑗 − 1 ) / 2 ) ) = ( 𝑗 − 1 ) ) |
44 |
43
|
oveq1d |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( ( 2 · ( ( 𝑗 − 1 ) / 2 ) ) + 1 ) = ( ( 𝑗 − 1 ) + 1 ) ) |
45 |
|
npcan |
⊢ ( ( 𝑗 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 ) |
46 |
36 37 45
|
sylancl |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 ) |
47 |
44 46
|
eqtr2d |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → 𝑗 = ( ( 2 · ( ( 𝑗 − 1 ) / 2 ) ) + 1 ) ) |
48 |
43
|
oveq2d |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( 0 ... ( 2 · ( ( 𝑗 − 1 ) / 2 ) ) ) = ( 0 ... ( 𝑗 − 1 ) ) ) |
49 |
|
nnm1nn0 |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 − 1 ) ∈ ℕ0 ) |
50 |
33 34 49
|
3syl |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( 𝑗 − 1 ) ∈ ℕ0 ) |
51 |
|
elnn0uz |
⊢ ( ( 𝑗 − 1 ) ∈ ℕ0 ↔ ( 𝑗 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
52 |
50 51
|
sylib |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( 𝑗 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
53 |
|
eluzfz1 |
⊢ ( ( 𝑗 − 1 ) ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... ( 𝑗 − 1 ) ) ) |
54 |
|
fzsplit |
⊢ ( 0 ∈ ( 0 ... ( 𝑗 − 1 ) ) → ( 0 ... ( 𝑗 − 1 ) ) = ( ( 0 ... 0 ) ∪ ( ( 0 + 1 ) ... ( 𝑗 − 1 ) ) ) ) |
55 |
52 53 54
|
3syl |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( 0 ... ( 𝑗 − 1 ) ) = ( ( 0 ... 0 ) ∪ ( ( 0 + 1 ) ... ( 𝑗 − 1 ) ) ) ) |
56 |
48 55
|
eqtrd |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( 0 ... ( 2 · ( ( 𝑗 − 1 ) / 2 ) ) ) = ( ( 0 ... 0 ) ∪ ( ( 0 + 1 ) ... ( 𝑗 − 1 ) ) ) ) |
57 |
|
fz0sn |
⊢ ( 0 ... 0 ) = { 0 } |
58 |
15 15
|
oveq12i |
⊢ ( ( ( abs ‘ 0 ) ↑ 2 ) + ( ( abs ‘ 0 ) ↑ 2 ) ) = ( 0 + 0 ) |
59 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
60 |
58 59
|
eqtri |
⊢ ( ( ( abs ‘ 0 ) ↑ 2 ) + ( ( abs ‘ 0 ) ↑ 2 ) ) = 0 |
61 |
1
|
4sqlem4a |
⊢ ( ( 0 ∈ ℤ[i] ∧ 0 ∈ ℤ[i] ) → ( ( ( abs ‘ 0 ) ↑ 2 ) + ( ( abs ‘ 0 ) ↑ 2 ) ) ∈ 𝑆 ) |
62 |
24 24 61
|
mp2an |
⊢ ( ( ( abs ‘ 0 ) ↑ 2 ) + ( ( abs ‘ 0 ) ↑ 2 ) ) ∈ 𝑆 |
63 |
60 62
|
eqeltrri |
⊢ 0 ∈ 𝑆 |
64 |
|
snssi |
⊢ ( 0 ∈ 𝑆 → { 0 } ⊆ 𝑆 ) |
65 |
63 64
|
ax-mp |
⊢ { 0 } ⊆ 𝑆 |
66 |
57 65
|
eqsstri |
⊢ ( 0 ... 0 ) ⊆ 𝑆 |
67 |
66
|
a1i |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( 0 ... 0 ) ⊆ 𝑆 ) |
68 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
69 |
68
|
oveq1i |
⊢ ( ( 0 + 1 ) ... ( 𝑗 − 1 ) ) = ( 1 ... ( 𝑗 − 1 ) ) |
70 |
|
simpr |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) |
71 |
|
dfss3 |
⊢ ( ( 1 ... ( 𝑗 − 1 ) ) ⊆ 𝑆 ↔ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) |
72 |
70 71
|
sylibr |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( 1 ... ( 𝑗 − 1 ) ) ⊆ 𝑆 ) |
73 |
69 72
|
eqsstrid |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( ( 0 + 1 ) ... ( 𝑗 − 1 ) ) ⊆ 𝑆 ) |
74 |
67 73
|
unssd |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( ( 0 ... 0 ) ∪ ( ( 0 + 1 ) ... ( 𝑗 − 1 ) ) ) ⊆ 𝑆 ) |
75 |
56 74
|
eqsstrd |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → ( 0 ... ( 2 · ( ( 𝑗 − 1 ) / 2 ) ) ) ⊆ 𝑆 ) |
76 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 · 𝑗 ) = ( 𝑖 · 𝑗 ) ) |
77 |
76
|
eleq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑘 · 𝑗 ) ∈ 𝑆 ↔ ( 𝑖 · 𝑗 ) ∈ 𝑆 ) ) |
78 |
77
|
cbvrabv |
⊢ { 𝑘 ∈ ℕ ∣ ( 𝑘 · 𝑗 ) ∈ 𝑆 } = { 𝑖 ∈ ℕ ∣ ( 𝑖 · 𝑗 ) ∈ 𝑆 } |
79 |
|
eqid |
⊢ inf ( { 𝑘 ∈ ℕ ∣ ( 𝑘 · 𝑗 ) ∈ 𝑆 } , ℝ , < ) = inf ( { 𝑘 ∈ ℕ ∣ ( 𝑘 · 𝑗 ) ∈ 𝑆 } , ℝ , < ) |
80 |
1 31 47 33 75 78 79
|
4sqlem18 |
⊢ ( ( 𝑗 ∈ ( ℙ ∖ { 2 } ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → 𝑗 ∈ 𝑆 ) |
81 |
29 80
|
sylanbr |
⊢ ( ( ( 𝑗 ∈ ℙ ∧ 𝑗 ≠ 2 ) ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → 𝑗 ∈ 𝑆 ) |
82 |
81
|
an32s |
⊢ ( ( ( 𝑗 ∈ ℙ ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) ∧ 𝑗 ≠ 2 ) → 𝑗 ∈ 𝑆 ) |
83 |
11 11
|
oveq12i |
⊢ ( ( ( abs ‘ 1 ) ↑ 2 ) + ( ( abs ‘ 1 ) ↑ 2 ) ) = ( 1 + 1 ) |
84 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
85 |
83 84
|
eqtr4i |
⊢ ( ( ( abs ‘ 1 ) ↑ 2 ) + ( ( abs ‘ 1 ) ↑ 2 ) ) = 2 |
86 |
1
|
4sqlem4a |
⊢ ( ( 1 ∈ ℤ[i] ∧ 1 ∈ ℤ[i] ) → ( ( ( abs ‘ 1 ) ↑ 2 ) + ( ( abs ‘ 1 ) ↑ 2 ) ) ∈ 𝑆 ) |
87 |
21 21 86
|
mp2an |
⊢ ( ( ( abs ‘ 1 ) ↑ 2 ) + ( ( abs ‘ 1 ) ↑ 2 ) ) ∈ 𝑆 |
88 |
85 87
|
eqeltrri |
⊢ 2 ∈ 𝑆 |
89 |
88
|
a1i |
⊢ ( ( 𝑗 ∈ ℙ ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → 2 ∈ 𝑆 ) |
90 |
28 82 89
|
pm2.61ne |
⊢ ( ( 𝑗 ∈ ℙ ∧ ∀ 𝑚 ∈ ( 1 ... ( 𝑗 − 1 ) ) 𝑚 ∈ 𝑆 ) → 𝑗 ∈ 𝑆 ) |
91 |
1
|
mul4sq |
⊢ ( ( 𝑚 ∈ 𝑆 ∧ 𝑖 ∈ 𝑆 ) → ( 𝑚 · 𝑖 ) ∈ 𝑆 ) |
92 |
91
|
a1i |
⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑚 ∈ 𝑆 ∧ 𝑖 ∈ 𝑆 ) → ( 𝑚 · 𝑖 ) ∈ 𝑆 ) ) |
93 |
3 4 5 6 7 27 90 92
|
prmind2 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ 𝑆 ) |
94 |
|
id |
⊢ ( 𝑘 = 0 → 𝑘 = 0 ) |
95 |
94 63
|
eqeltrdi |
⊢ ( 𝑘 = 0 → 𝑘 ∈ 𝑆 ) |
96 |
93 95
|
jaoi |
⊢ ( ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) → 𝑘 ∈ 𝑆 ) |
97 |
2 96
|
sylbi |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ 𝑆 ) |
98 |
97
|
ssriv |
⊢ ℕ0 ⊆ 𝑆 |
99 |
1
|
4sqlem1 |
⊢ 𝑆 ⊆ ℕ0 |
100 |
98 99
|
eqssi |
⊢ ℕ0 = 𝑆 |