Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } |
2 |
1
|
4sqlem2 |
⊢ ( 𝐴 ∈ 𝑆 ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
3 |
|
gzreim |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 + ( i · 𝑏 ) ) ∈ ℤ[i] ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) → ( 𝑎 + ( i · 𝑏 ) ) ∈ ℤ[i] ) |
5 |
|
gzreim |
⊢ ( ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) → ( 𝑐 + ( i · 𝑑 ) ) ∈ ℤ[i] ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) → ( 𝑐 + ( i · 𝑑 ) ) ∈ ℤ[i] ) |
7 |
|
gzcn |
⊢ ( ( 𝑎 + ( i · 𝑏 ) ) ∈ ℤ[i] → ( 𝑎 + ( i · 𝑏 ) ) ∈ ℂ ) |
8 |
3 7
|
syl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 + ( i · 𝑏 ) ) ∈ ℂ ) |
9 |
8
|
absvalsq2d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) ) ) |
10 |
|
zre |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℝ ) |
11 |
|
zre |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℝ ) |
12 |
|
crre |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ℜ ‘ ( 𝑎 + ( i · 𝑏 ) ) ) = 𝑎 ) |
13 |
10 11 12
|
syl2an |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ℜ ‘ ( 𝑎 + ( i · 𝑏 ) ) ) = 𝑎 ) |
14 |
13
|
oveq1d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( ℜ ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
15 |
|
crim |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ℑ ‘ ( 𝑎 + ( i · 𝑏 ) ) ) = 𝑏 ) |
16 |
10 11 15
|
syl2an |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ℑ ‘ ( 𝑎 + ( i · 𝑏 ) ) ) = 𝑏 ) |
17 |
16
|
oveq1d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( ℑ ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
18 |
14 17
|
oveq12d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( ( ℜ ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
19 |
9 18
|
eqtrd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
20 |
|
gzcn |
⊢ ( ( 𝑐 + ( i · 𝑑 ) ) ∈ ℤ[i] → ( 𝑐 + ( i · 𝑑 ) ) ∈ ℂ ) |
21 |
5 20
|
syl |
⊢ ( ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) → ( 𝑐 + ( i · 𝑑 ) ) ∈ ℂ ) |
22 |
21
|
absvalsq2d |
⊢ ( ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) → ( ( abs ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) ) ) |
23 |
|
zre |
⊢ ( 𝑐 ∈ ℤ → 𝑐 ∈ ℝ ) |
24 |
|
zre |
⊢ ( 𝑑 ∈ ℤ → 𝑑 ∈ ℝ ) |
25 |
|
crre |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) → ( ℜ ‘ ( 𝑐 + ( i · 𝑑 ) ) ) = 𝑐 ) |
26 |
23 24 25
|
syl2an |
⊢ ( ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) → ( ℜ ‘ ( 𝑐 + ( i · 𝑑 ) ) ) = 𝑐 ) |
27 |
26
|
oveq1d |
⊢ ( ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) → ( ( ℜ ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) = ( 𝑐 ↑ 2 ) ) |
28 |
|
crim |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) → ( ℑ ‘ ( 𝑐 + ( i · 𝑑 ) ) ) = 𝑑 ) |
29 |
23 24 28
|
syl2an |
⊢ ( ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) → ( ℑ ‘ ( 𝑐 + ( i · 𝑑 ) ) ) = 𝑑 ) |
30 |
29
|
oveq1d |
⊢ ( ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) → ( ( ℑ ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) = ( 𝑑 ↑ 2 ) ) |
31 |
27 30
|
oveq12d |
⊢ ( ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) → ( ( ( ℜ ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) ) = ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) |
32 |
22 31
|
eqtrd |
⊢ ( ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) → ( ( abs ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) = ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) |
33 |
19 32
|
oveqan12d |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) → ( ( ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
34 |
33
|
eqcomd |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) ) ) |
35 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑎 + ( i · 𝑏 ) ) → ( abs ‘ 𝑢 ) = ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ) |
36 |
35
|
oveq1d |
⊢ ( 𝑢 = ( 𝑎 + ( i · 𝑏 ) ) → ( ( abs ‘ 𝑢 ) ↑ 2 ) = ( ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) ) |
37 |
36
|
oveq1d |
⊢ ( 𝑢 = ( 𝑎 + ( i · 𝑏 ) ) → ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) = ( ( ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ) |
38 |
37
|
eqeq2d |
⊢ ( 𝑢 = ( 𝑎 + ( i · 𝑏 ) ) → ( ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ↔ ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ) ) |
39 |
|
fveq2 |
⊢ ( 𝑣 = ( 𝑐 + ( i · 𝑑 ) ) → ( abs ‘ 𝑣 ) = ( abs ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ) |
40 |
39
|
oveq1d |
⊢ ( 𝑣 = ( 𝑐 + ( i · 𝑑 ) ) → ( ( abs ‘ 𝑣 ) ↑ 2 ) = ( ( abs ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) ) |
41 |
40
|
oveq2d |
⊢ ( 𝑣 = ( 𝑐 + ( i · 𝑑 ) ) → ( ( ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) = ( ( ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) ) ) |
42 |
41
|
eqeq2d |
⊢ ( 𝑣 = ( 𝑐 + ( i · 𝑑 ) ) → ( ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ↔ ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) ) ) ) |
43 |
38 42
|
rspc2ev |
⊢ ( ( ( 𝑎 + ( i · 𝑏 ) ) ∈ ℤ[i] ∧ ( 𝑐 + ( i · 𝑑 ) ) ∈ ℤ[i] ∧ ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( abs ‘ ( 𝑎 + ( i · 𝑏 ) ) ) ↑ 2 ) + ( ( abs ‘ ( 𝑐 + ( i · 𝑑 ) ) ) ↑ 2 ) ) ) → ∃ 𝑢 ∈ ℤ[i] ∃ 𝑣 ∈ ℤ[i] ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ) |
44 |
4 6 34 43
|
syl3anc |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) → ∃ 𝑢 ∈ ℤ[i] ∃ 𝑣 ∈ ℤ[i] ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ) |
45 |
|
eqeq1 |
⊢ ( 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → ( 𝐴 = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ↔ ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ) ) |
46 |
45
|
2rexbidv |
⊢ ( 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → ( ∃ 𝑢 ∈ ℤ[i] ∃ 𝑣 ∈ ℤ[i] 𝐴 = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ↔ ∃ 𝑢 ∈ ℤ[i] ∃ 𝑣 ∈ ℤ[i] ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ) ) |
47 |
44 46
|
syl5ibrcom |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ ) ) → ( 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → ∃ 𝑢 ∈ ℤ[i] ∃ 𝑣 ∈ ℤ[i] 𝐴 = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ) ) |
48 |
47
|
rexlimdvva |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → ∃ 𝑢 ∈ ℤ[i] ∃ 𝑣 ∈ ℤ[i] 𝐴 = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ) ) |
49 |
48
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ 𝐴 = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) → ∃ 𝑢 ∈ ℤ[i] ∃ 𝑣 ∈ ℤ[i] 𝐴 = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ) |
50 |
2 49
|
sylbi |
⊢ ( 𝐴 ∈ 𝑆 → ∃ 𝑢 ∈ ℤ[i] ∃ 𝑣 ∈ ℤ[i] 𝐴 = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ) |
51 |
1
|
4sqlem4a |
⊢ ( ( 𝑢 ∈ ℤ[i] ∧ 𝑣 ∈ ℤ[i] ) → ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ∈ 𝑆 ) |
52 |
|
eleq1a |
⊢ ( ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ∈ 𝑆 → ( 𝐴 = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) → 𝐴 ∈ 𝑆 ) ) |
53 |
51 52
|
syl |
⊢ ( ( 𝑢 ∈ ℤ[i] ∧ 𝑣 ∈ ℤ[i] ) → ( 𝐴 = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) → 𝐴 ∈ 𝑆 ) ) |
54 |
53
|
rexlimivv |
⊢ ( ∃ 𝑢 ∈ ℤ[i] ∃ 𝑣 ∈ ℤ[i] 𝐴 = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) → 𝐴 ∈ 𝑆 ) |
55 |
50 54
|
impbii |
⊢ ( 𝐴 ∈ 𝑆 ↔ ∃ 𝑢 ∈ ℤ[i] ∃ 𝑣 ∈ ℤ[i] 𝐴 = ( ( ( abs ‘ 𝑢 ) ↑ 2 ) + ( ( abs ‘ 𝑣 ) ↑ 2 ) ) ) |