Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } |
2 |
|
gzcn |
⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) |
3 |
2
|
absvalsq2d |
⊢ ( 𝐴 ∈ ℤ[i] → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
4 |
|
gzcn |
⊢ ( 𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ ) |
5 |
4
|
absvalsq2d |
⊢ ( 𝐵 ∈ ℤ[i] → ( ( abs ‘ 𝐵 ) ↑ 2 ) = ( ( ( ℜ ‘ 𝐵 ) ↑ 2 ) + ( ( ℑ ‘ 𝐵 ) ↑ 2 ) ) ) |
6 |
3 5
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) = ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( ℜ ‘ 𝐵 ) ↑ 2 ) + ( ( ℑ ‘ 𝐵 ) ↑ 2 ) ) ) ) |
7 |
|
elgz |
⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) |
8 |
7
|
simp2bi |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
9 |
7
|
simp3bi |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
10 |
8 9
|
jca |
⊢ ( 𝐴 ∈ ℤ[i] → ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) |
11 |
|
elgz |
⊢ ( 𝐵 ∈ ℤ[i] ↔ ( 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ℤ ∧ ( ℑ ‘ 𝐵 ) ∈ ℤ ) ) |
12 |
11
|
simp2bi |
⊢ ( 𝐵 ∈ ℤ[i] → ( ℜ ‘ 𝐵 ) ∈ ℤ ) |
13 |
11
|
simp3bi |
⊢ ( 𝐵 ∈ ℤ[i] → ( ℑ ‘ 𝐵 ) ∈ ℤ ) |
14 |
12 13
|
jca |
⊢ ( 𝐵 ∈ ℤ[i] → ( ( ℜ ‘ 𝐵 ) ∈ ℤ ∧ ( ℑ ‘ 𝐵 ) ∈ ℤ ) ) |
15 |
1
|
4sqlem3 |
⊢ ( ( ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ∧ ( ( ℜ ‘ 𝐵 ) ∈ ℤ ∧ ( ℑ ‘ 𝐵 ) ∈ ℤ ) ) → ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( ℜ ‘ 𝐵 ) ↑ 2 ) + ( ( ℑ ‘ 𝐵 ) ↑ 2 ) ) ) ∈ 𝑆 ) |
16 |
10 14 15
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( ℜ ‘ 𝐵 ) ↑ 2 ) + ( ( ℑ ‘ 𝐵 ) ↑ 2 ) ) ) ∈ 𝑆 ) |
17 |
6 16
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) + ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ∈ 𝑆 ) |