Step |
Hyp |
Ref |
Expression |
1 |
|
4sqlem5.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
2 |
|
4sqlem5.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
3 |
|
4sqlem5.4 |
⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
4 |
1
|
zcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
5 |
1
|
zred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
6 |
2
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
7 |
6
|
rehalfcld |
⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ ) |
8 |
5 7
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℝ ) |
9 |
2
|
nnrpd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
10 |
8 9
|
modcld |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ∈ ℂ ) |
12 |
7
|
recnd |
⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℂ ) |
13 |
11 12
|
subcld |
⊢ ( 𝜑 → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ∈ ℂ ) |
14 |
3 13
|
eqeltrid |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
15 |
4 14
|
nncand |
⊢ ( 𝜑 → ( 𝐴 − ( 𝐴 − 𝐵 ) ) = 𝐵 ) |
16 |
4 14
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
17 |
6
|
recnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
18 |
2
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
19 |
16 17 18
|
divcan1d |
⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) · 𝑀 ) = ( 𝐴 − 𝐵 ) ) |
20 |
3
|
oveq2i |
⊢ ( 𝐴 − 𝐵 ) = ( 𝐴 − ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ) |
21 |
4 11 12
|
subsub3d |
⊢ ( 𝜑 → ( 𝐴 − ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) ) |
22 |
20 21
|
eqtrid |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) / 𝑀 ) ) |
24 |
|
moddifz |
⊢ ( ( ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) / 𝑀 ) ∈ ℤ ) |
25 |
8 9 24
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) − ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) / 𝑀 ) ∈ ℤ ) |
26 |
23 25
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) |
27 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
28 |
26 27
|
zmulcld |
⊢ ( 𝜑 → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) · 𝑀 ) ∈ ℤ ) |
29 |
19 28
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
30 |
1 29
|
zsubcld |
⊢ ( 𝜑 → ( 𝐴 − ( 𝐴 − 𝐵 ) ) ∈ ℤ ) |
31 |
15 30
|
eqeltrrd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
32 |
31 26
|
jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |