| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sqlem5.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 2 |
|
4sqlem5.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 3 |
|
4sqlem5.4 |
⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 4 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 5 |
1
|
zred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 |
2
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 7 |
6
|
rehalfcld |
⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ ) |
| 8 |
5 7
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℝ ) |
| 9 |
2
|
nnrpd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
| 10 |
8 9
|
modcld |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ∈ ℝ ) |
| 11 |
|
modge0 |
⊢ ( ( ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 0 ≤ ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) |
| 12 |
8 9 11
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) ) |
| 13 |
4 10 7 12
|
lesub1dd |
⊢ ( 𝜑 → ( 0 − ( 𝑀 / 2 ) ) ≤ ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ) |
| 14 |
|
df-neg |
⊢ - ( 𝑀 / 2 ) = ( 0 − ( 𝑀 / 2 ) ) |
| 15 |
13 14 3
|
3brtr4g |
⊢ ( 𝜑 → - ( 𝑀 / 2 ) ≤ 𝐵 ) |
| 16 |
|
modlt |
⊢ ( ( ( 𝐴 + ( 𝑀 / 2 ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) < 𝑀 ) |
| 17 |
8 9 16
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) < 𝑀 ) |
| 18 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 19 |
18
|
2halvesd |
⊢ ( 𝜑 → ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) = 𝑀 ) |
| 20 |
17 19
|
breqtrrd |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) < ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) ) |
| 21 |
10 7 7
|
ltsubaddd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) < ( 𝑀 / 2 ) ↔ ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) < ( ( 𝑀 / 2 ) + ( 𝑀 / 2 ) ) ) ) |
| 22 |
20 21
|
mpbird |
⊢ ( 𝜑 → ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) < ( 𝑀 / 2 ) ) |
| 23 |
3 22
|
eqbrtrid |
⊢ ( 𝜑 → 𝐵 < ( 𝑀 / 2 ) ) |
| 24 |
15 23
|
jca |
⊢ ( 𝜑 → ( - ( 𝑀 / 2 ) ≤ 𝐵 ∧ 𝐵 < ( 𝑀 / 2 ) ) ) |