| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sqlem5.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 2 |
|
4sqlem5.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 3 |
|
4sqlem5.4 |
⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 4 |
1 2 3
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |
| 5 |
4
|
simpld |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 6 |
5
|
zred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 7 |
2
|
nnrpd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
| 8 |
7
|
rphalfcld |
⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ+ ) |
| 9 |
8
|
rpred |
⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ ) |
| 10 |
1 2 3
|
4sqlem6 |
⊢ ( 𝜑 → ( - ( 𝑀 / 2 ) ≤ 𝐵 ∧ 𝐵 < ( 𝑀 / 2 ) ) ) |
| 11 |
10
|
simprd |
⊢ ( 𝜑 → 𝐵 < ( 𝑀 / 2 ) ) |
| 12 |
6 9 11
|
ltled |
⊢ ( 𝜑 → 𝐵 ≤ ( 𝑀 / 2 ) ) |
| 13 |
10
|
simpld |
⊢ ( 𝜑 → - ( 𝑀 / 2 ) ≤ 𝐵 ) |
| 14 |
9 6 13
|
lenegcon1d |
⊢ ( 𝜑 → - 𝐵 ≤ ( 𝑀 / 2 ) ) |
| 15 |
8
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑀 / 2 ) ) |
| 16 |
|
lenegsq |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝑀 / 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 / 2 ) ) → ( ( 𝐵 ≤ ( 𝑀 / 2 ) ∧ - 𝐵 ≤ ( 𝑀 / 2 ) ) ↔ ( 𝐵 ↑ 2 ) ≤ ( ( 𝑀 / 2 ) ↑ 2 ) ) ) |
| 17 |
6 9 15 16
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 ≤ ( 𝑀 / 2 ) ∧ - 𝐵 ≤ ( 𝑀 / 2 ) ) ↔ ( 𝐵 ↑ 2 ) ≤ ( ( 𝑀 / 2 ) ↑ 2 ) ) ) |
| 18 |
12 14 17
|
mpbi2and |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ≤ ( ( 𝑀 / 2 ) ↑ 2 ) ) |
| 19 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 20 |
19
|
sqvald |
⊢ ( 𝜑 → ( 2 ↑ 2 ) = ( 2 · 2 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) / ( 2 ↑ 2 ) ) = ( ( 𝑀 ↑ 2 ) / ( 2 · 2 ) ) ) |
| 22 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 23 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 25 |
22 19 24
|
sqdivd |
⊢ ( 𝜑 → ( ( 𝑀 / 2 ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
| 26 |
22
|
sqcld |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℂ ) |
| 27 |
26 19 19 24 24
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) = ( ( 𝑀 ↑ 2 ) / ( 2 · 2 ) ) ) |
| 28 |
21 25 27
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑀 / 2 ) ↑ 2 ) = ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 29 |
18 28
|
breqtrd |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |