| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sqlem5.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 2 |
|
4sqlem5.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 3 |
|
4sqlem5.4 |
⊢ 𝐵 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 4 |
|
4sqlem9.5 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐵 ↑ 2 ) = 0 ) |
| 5 |
1 2 3
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) ) |
| 6 |
5
|
simpld |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 7 |
6
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 8 |
|
sqeq0 |
⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 ↑ 2 ) = 0 ↔ 𝐵 = 0 ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) = 0 ↔ 𝐵 = 0 ) ) |
| 10 |
9
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝐵 ↑ 2 ) = 0 ) → 𝐵 = 0 ) |
| 11 |
4 10
|
syldan |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 = 0 ) |
| 12 |
11
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 − 0 ) ) |
| 13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ ℤ ) |
| 14 |
13
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ ℂ ) |
| 15 |
14
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 − 0 ) = 𝐴 ) |
| 16 |
12 15
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 − 𝐵 ) = 𝐴 ) |
| 17 |
16
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( 𝐴 / 𝑀 ) ) |
| 18 |
5
|
simprd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) ∈ ℤ ) |
| 20 |
17 19
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 / 𝑀 ) ∈ ℤ ) |
| 21 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 22 |
2
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 23 |
|
dvdsval2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝐴 ∈ ℤ ) → ( 𝑀 ∥ 𝐴 ↔ ( 𝐴 / 𝑀 ) ∈ ℤ ) ) |
| 24 |
21 22 1 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 ∥ 𝐴 ↔ ( 𝐴 / 𝑀 ) ∈ ℤ ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ∥ 𝐴 ↔ ( 𝐴 / 𝑀 ) ∈ ℤ ) ) |
| 26 |
20 25
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∥ 𝐴 ) |
| 27 |
|
dvdssq |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑀 ∥ 𝐴 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) ) |
| 28 |
21 13 27
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ∥ 𝐴 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) ) |
| 29 |
26 28
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) |