| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4t3lem.1 |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
4t3lem.2 |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
4t3lem.3 |
⊢ 𝐶 = ( 𝐵 + 1 ) |
| 4 |
|
4t3lem.4 |
⊢ ( 𝐴 · 𝐵 ) = 𝐷 |
| 5 |
|
4t3lem.5 |
⊢ ( 𝐷 + 𝐴 ) = 𝐸 |
| 6 |
3
|
oveq2i |
⊢ ( 𝐴 · 𝐶 ) = ( 𝐴 · ( 𝐵 + 1 ) ) |
| 7 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
| 8 |
2
|
nn0cni |
⊢ 𝐵 ∈ ℂ |
| 9 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 10 |
7 8 9
|
adddii |
⊢ ( 𝐴 · ( 𝐵 + 1 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 1 ) ) |
| 11 |
7
|
mulridi |
⊢ ( 𝐴 · 1 ) = 𝐴 |
| 12 |
4 11
|
oveq12i |
⊢ ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 1 ) ) = ( 𝐷 + 𝐴 ) |
| 13 |
10 12
|
eqtri |
⊢ ( 𝐴 · ( 𝐵 + 1 ) ) = ( 𝐷 + 𝐴 ) |
| 14 |
13 5
|
eqtri |
⊢ ( 𝐴 · ( 𝐵 + 1 ) ) = 𝐸 |
| 15 |
6 14
|
eqtri |
⊢ ( 𝐴 · 𝐶 ) = 𝐸 |