Metamath Proof Explorer


Theorem 4t4e16

Description: 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 4t4e16 ( 4 · 4 ) = 1 6

Proof

Step Hyp Ref Expression
1 4nn0 4 ∈ ℕ0
2 3nn0 3 ∈ ℕ0
3 df-4 4 = ( 3 + 1 )
4 4t3e12 ( 4 · 3 ) = 1 2
5 1nn0 1 ∈ ℕ0
6 2nn0 2 ∈ ℕ0
7 eqid 1 2 = 1 2
8 4cn 4 ∈ ℂ
9 2cn 2 ∈ ℂ
10 4p2e6 ( 4 + 2 ) = 6
11 8 9 10 addcomli ( 2 + 4 ) = 6
12 5 6 1 7 11 decaddi ( 1 2 + 4 ) = 1 6
13 1 2 3 4 12 4t3lem ( 4 · 4 ) = 1 6