Metamath Proof Explorer


Theorem 5nn

Description: 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 5nn 5 ∈ ℕ

Proof

Step Hyp Ref Expression
1 df-5 5 = ( 4 + 1 )
2 4nn 4 ∈ ℕ
3 peano2nn ( 4 ∈ ℕ → ( 4 + 1 ) ∈ ℕ )
4 2 3 ax-mp ( 4 + 1 ) ∈ ℕ
5 1 4 eqeltri 5 ∈ ℕ