Metamath Proof Explorer


Theorem 5prm

Description: 5 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 5prm 5 ∈ ℙ

Proof

Step Hyp Ref Expression
1 5nn 5 ∈ ℕ
2 1lt5 1 < 5
3 2nn 2 ∈ ℕ
4 2nn0 2 ∈ ℕ0
5 1nn 1 ∈ ℕ
6 2t2e4 ( 2 · 2 ) = 4
7 6 oveq1i ( ( 2 · 2 ) + 1 ) = ( 4 + 1 )
8 df-5 5 = ( 4 + 1 )
9 7 8 eqtr4i ( ( 2 · 2 ) + 1 ) = 5
10 1lt2 1 < 2
11 3 4 5 9 10 ndvdsi ¬ 2 ∥ 5
12 3nn 3 ∈ ℕ
13 1nn0 1 ∈ ℕ0
14 3t1e3 ( 3 · 1 ) = 3
15 14 oveq1i ( ( 3 · 1 ) + 2 ) = ( 3 + 2 )
16 3p2e5 ( 3 + 2 ) = 5
17 15 16 eqtri ( ( 3 · 1 ) + 2 ) = 5
18 2lt3 2 < 3
19 12 13 3 17 18 ndvdsi ¬ 3 ∥ 5
20 5nn0 5 ∈ ℕ0
21 5lt10 5 < 1 0
22 3 20 20 21 declti 5 < 2 5
23 1 2 11 19 22 prmlem1 5 ∈ ℙ