Metamath Proof Explorer
Description: 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015)
(Revised by AV, 6-Sep-2021)
|
|
Ref |
Expression |
|
Assertion |
5t5e25 |
⊢ ( 5 · 5 ) = ; 2 5 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
2 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
3 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
4 |
|
5t4e20 |
⊢ ( 5 · 4 ) = ; 2 0 |
5 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
6 |
5
|
dec0u |
⊢ ( ; 1 0 · 2 ) = ; 2 0 |
7 |
4 6
|
eqtr4i |
⊢ ( 5 · 4 ) = ( ; 1 0 · 2 ) |
8 |
|
dfdec10 |
⊢ ; 2 5 = ( ( ; 1 0 · 2 ) + 5 ) |
9 |
8
|
eqcomi |
⊢ ( ( ; 1 0 · 2 ) + 5 ) = ; 2 5 |
10 |
1 2 3 7 9
|
4t3lem |
⊢ ( 5 · 5 ) = ; 2 5 |