Description: 631 is a prime number. (Contributed by Mario Carneiro, 1-Mar-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | 631prm | ⊢ ; ; 6 3 1 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
2 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
3 | 1 2 | deccl | ⊢ ; 6 3 ∈ ℕ0 |
4 | 1nn | ⊢ 1 ∈ ℕ | |
5 | 3 4 | decnncl | ⊢ ; ; 6 3 1 ∈ ℕ |
6 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
7 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
8 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
9 | 6lt8 | ⊢ 6 < 8 | |
10 | 3lt10 | ⊢ 3 < ; 1 0 | |
11 | 1lt10 | ⊢ 1 < ; 1 0 | |
12 | 1 6 2 7 8 8 9 10 11 | 3decltc | ⊢ ; ; 6 3 1 < ; ; 8 4 1 |
13 | 3nn | ⊢ 3 ∈ ℕ | |
14 | 1 13 | decnncl | ⊢ ; 6 3 ∈ ℕ |
15 | 14 8 8 11 | declti | ⊢ 1 < ; ; 6 3 1 |
16 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
17 | 2cn | ⊢ 2 ∈ ℂ | |
18 | 17 | mul02i | ⊢ ( 0 · 2 ) = 0 |
19 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
20 | 3 16 18 19 | dec2dvds | ⊢ ¬ 2 ∥ ; ; 6 3 1 |
21 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
22 | 21 8 | deccl | ⊢ ; 2 1 ∈ ℕ0 |
23 | 22 16 | deccl | ⊢ ; ; 2 1 0 ∈ ℕ0 |
24 | eqid | ⊢ ; ; 2 1 0 = ; ; 2 1 0 | |
25 | 8 | dec0h | ⊢ 1 = ; 0 1 |
26 | eqid | ⊢ ; 2 1 = ; 2 1 | |
27 | 00id | ⊢ ( 0 + 0 ) = 0 | |
28 | 16 | dec0h | ⊢ 0 = ; 0 0 |
29 | 27 28 | eqtri | ⊢ ( 0 + 0 ) = ; 0 0 |
30 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
31 | 30 27 | oveq12i | ⊢ ( ( 3 · 2 ) + ( 0 + 0 ) ) = ( 6 + 0 ) |
32 | 6cn | ⊢ 6 ∈ ℂ | |
33 | 32 | addid1i | ⊢ ( 6 + 0 ) = 6 |
34 | 31 33 | eqtri | ⊢ ( ( 3 · 2 ) + ( 0 + 0 ) ) = 6 |
35 | 3t1e3 | ⊢ ( 3 · 1 ) = 3 | |
36 | 35 | oveq1i | ⊢ ( ( 3 · 1 ) + 0 ) = ( 3 + 0 ) |
37 | 3cn | ⊢ 3 ∈ ℂ | |
38 | 37 | addid1i | ⊢ ( 3 + 0 ) = 3 |
39 | 2 | dec0h | ⊢ 3 = ; 0 3 |
40 | 36 38 39 | 3eqtri | ⊢ ( ( 3 · 1 ) + 0 ) = ; 0 3 |
41 | 21 8 16 16 26 29 2 2 16 34 40 | decma2c | ⊢ ( ( 3 · ; 2 1 ) + ( 0 + 0 ) ) = ; 6 3 |
42 | 37 | mul01i | ⊢ ( 3 · 0 ) = 0 |
43 | 42 | oveq1i | ⊢ ( ( 3 · 0 ) + 1 ) = ( 0 + 1 ) |
44 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
45 | 43 44 25 | 3eqtri | ⊢ ( ( 3 · 0 ) + 1 ) = ; 0 1 |
46 | 22 16 16 8 24 25 2 8 16 41 45 | decma2c | ⊢ ( ( 3 · ; ; 2 1 0 ) + 1 ) = ; ; 6 3 1 |
47 | 1lt3 | ⊢ 1 < 3 | |
48 | 13 23 4 46 47 | ndvdsi | ⊢ ¬ 3 ∥ ; ; 6 3 1 |
49 | 1lt5 | ⊢ 1 < 5 | |
50 | 3 4 49 | dec5dvds | ⊢ ¬ 5 ∥ ; ; 6 3 1 |
51 | 7nn | ⊢ 7 ∈ ℕ | |
52 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
53 | 52 16 | deccl | ⊢ ; 9 0 ∈ ℕ0 |
54 | eqid | ⊢ ; 9 0 = ; 9 0 | |
55 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
56 | 27 | oveq2i | ⊢ ( ( 7 · 9 ) + ( 0 + 0 ) ) = ( ( 7 · 9 ) + 0 ) |
57 | 9cn | ⊢ 9 ∈ ℂ | |
58 | 7cn | ⊢ 7 ∈ ℂ | |
59 | 9t7e63 | ⊢ ( 9 · 7 ) = ; 6 3 | |
60 | 57 58 59 | mulcomli | ⊢ ( 7 · 9 ) = ; 6 3 |
61 | 60 | oveq1i | ⊢ ( ( 7 · 9 ) + 0 ) = ( ; 6 3 + 0 ) |
62 | 3 | nn0cni | ⊢ ; 6 3 ∈ ℂ |
63 | 62 | addid1i | ⊢ ( ; 6 3 + 0 ) = ; 6 3 |
64 | 56 61 63 | 3eqtri | ⊢ ( ( 7 · 9 ) + ( 0 + 0 ) ) = ; 6 3 |
65 | 58 | mul01i | ⊢ ( 7 · 0 ) = 0 |
66 | 65 | oveq1i | ⊢ ( ( 7 · 0 ) + 1 ) = ( 0 + 1 ) |
67 | 66 44 25 | 3eqtri | ⊢ ( ( 7 · 0 ) + 1 ) = ; 0 1 |
68 | 52 16 16 8 54 25 55 8 16 64 67 | decma2c | ⊢ ( ( 7 · ; 9 0 ) + 1 ) = ; ; 6 3 1 |
69 | 1lt7 | ⊢ 1 < 7 | |
70 | 51 53 4 68 69 | ndvdsi | ⊢ ¬ 7 ∥ ; ; 6 3 1 |
71 | 8 4 | decnncl | ⊢ ; 1 1 ∈ ℕ |
72 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
73 | 72 55 | deccl | ⊢ ; 5 7 ∈ ℕ0 |
74 | 4nn | ⊢ 4 ∈ ℕ | |
75 | eqid | ⊢ ; 5 7 = ; 5 7 | |
76 | 7 | dec0h | ⊢ 4 = ; 0 4 |
77 | 8 8 | deccl | ⊢ ; 1 1 ∈ ℕ0 |
78 | eqid | ⊢ ; 1 1 = ; 1 1 | |
79 | 8cn | ⊢ 8 ∈ ℂ | |
80 | 79 | addid2i | ⊢ ( 0 + 8 ) = 8 |
81 | 6 | dec0h | ⊢ 8 = ; 0 8 |
82 | 80 81 | eqtri | ⊢ ( 0 + 8 ) = ; 0 8 |
83 | 5cn | ⊢ 5 ∈ ℂ | |
84 | 83 | mulid2i | ⊢ ( 1 · 5 ) = 5 |
85 | 84 44 | oveq12i | ⊢ ( ( 1 · 5 ) + ( 0 + 1 ) ) = ( 5 + 1 ) |
86 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
87 | 85 86 | eqtri | ⊢ ( ( 1 · 5 ) + ( 0 + 1 ) ) = 6 |
88 | 84 | oveq1i | ⊢ ( ( 1 · 5 ) + 8 ) = ( 5 + 8 ) |
89 | 8p5e13 | ⊢ ( 8 + 5 ) = ; 1 3 | |
90 | 79 83 89 | addcomli | ⊢ ( 5 + 8 ) = ; 1 3 |
91 | 88 90 | eqtri | ⊢ ( ( 1 · 5 ) + 8 ) = ; 1 3 |
92 | 8 8 16 6 78 82 72 2 8 87 91 | decmac | ⊢ ( ( ; 1 1 · 5 ) + ( 0 + 8 ) ) = ; 6 3 |
93 | 58 | mulid2i | ⊢ ( 1 · 7 ) = 7 |
94 | 93 44 | oveq12i | ⊢ ( ( 1 · 7 ) + ( 0 + 1 ) ) = ( 7 + 1 ) |
95 | 7p1e8 | ⊢ ( 7 + 1 ) = 8 | |
96 | 94 95 | eqtri | ⊢ ( ( 1 · 7 ) + ( 0 + 1 ) ) = 8 |
97 | 93 | oveq1i | ⊢ ( ( 1 · 7 ) + 4 ) = ( 7 + 4 ) |
98 | 7p4e11 | ⊢ ( 7 + 4 ) = ; 1 1 | |
99 | 97 98 | eqtri | ⊢ ( ( 1 · 7 ) + 4 ) = ; 1 1 |
100 | 8 8 16 7 78 76 55 8 8 96 99 | decmac | ⊢ ( ( ; 1 1 · 7 ) + 4 ) = ; 8 1 |
101 | 72 55 16 7 75 76 77 8 6 92 100 | decma2c | ⊢ ( ( ; 1 1 · ; 5 7 ) + 4 ) = ; ; 6 3 1 |
102 | 4lt10 | ⊢ 4 < ; 1 0 | |
103 | 4 8 7 102 | declti | ⊢ 4 < ; 1 1 |
104 | 71 73 74 101 103 | ndvdsi | ⊢ ¬ ; 1 1 ∥ ; ; 6 3 1 |
105 | 8 13 | decnncl | ⊢ ; 1 3 ∈ ℕ |
106 | 7 6 | deccl | ⊢ ; 4 8 ∈ ℕ0 |
107 | eqid | ⊢ ; 4 8 = ; 4 8 | |
108 | 55 | dec0h | ⊢ 7 = ; 0 7 |
109 | 8 2 | deccl | ⊢ ; 1 3 ∈ ℕ0 |
110 | eqid | ⊢ ; 1 3 = ; 1 3 | |
111 | 77 | nn0cni | ⊢ ; 1 1 ∈ ℂ |
112 | 111 | addid2i | ⊢ ( 0 + ; 1 1 ) = ; 1 1 |
113 | 4cn | ⊢ 4 ∈ ℂ | |
114 | 113 | mulid2i | ⊢ ( 1 · 4 ) = 4 |
115 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
116 | 114 115 | oveq12i | ⊢ ( ( 1 · 4 ) + ( 1 + 1 ) ) = ( 4 + 2 ) |
117 | 4p2e6 | ⊢ ( 4 + 2 ) = 6 | |
118 | 116 117 | eqtri | ⊢ ( ( 1 · 4 ) + ( 1 + 1 ) ) = 6 |
119 | 4t3e12 | ⊢ ( 4 · 3 ) = ; 1 2 | |
120 | 113 37 119 | mulcomli | ⊢ ( 3 · 4 ) = ; 1 2 |
121 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
122 | 8 21 8 120 121 | decaddi | ⊢ ( ( 3 · 4 ) + 1 ) = ; 1 3 |
123 | 8 2 8 8 110 112 7 2 8 118 122 | decmac | ⊢ ( ( ; 1 3 · 4 ) + ( 0 + ; 1 1 ) ) = ; 6 3 |
124 | 79 | mulid2i | ⊢ ( 1 · 8 ) = 8 |
125 | 37 | addid2i | ⊢ ( 0 + 3 ) = 3 |
126 | 124 125 | oveq12i | ⊢ ( ( 1 · 8 ) + ( 0 + 3 ) ) = ( 8 + 3 ) |
127 | 8p3e11 | ⊢ ( 8 + 3 ) = ; 1 1 | |
128 | 126 127 | eqtri | ⊢ ( ( 1 · 8 ) + ( 0 + 3 ) ) = ; 1 1 |
129 | 8t3e24 | ⊢ ( 8 · 3 ) = ; 2 4 | |
130 | 79 37 129 | mulcomli | ⊢ ( 3 · 8 ) = ; 2 4 |
131 | 58 113 98 | addcomli | ⊢ ( 4 + 7 ) = ; 1 1 |
132 | 21 7 55 130 121 8 131 | decaddci | ⊢ ( ( 3 · 8 ) + 7 ) = ; 3 1 |
133 | 8 2 16 55 110 108 6 8 2 128 132 | decmac | ⊢ ( ( ; 1 3 · 8 ) + 7 ) = ; ; 1 1 1 |
134 | 7 6 16 55 107 108 109 8 77 123 133 | decma2c | ⊢ ( ( ; 1 3 · ; 4 8 ) + 7 ) = ; ; 6 3 1 |
135 | 7lt10 | ⊢ 7 < ; 1 0 | |
136 | 4 2 55 135 | declti | ⊢ 7 < ; 1 3 |
137 | 105 106 51 134 136 | ndvdsi | ⊢ ¬ ; 1 3 ∥ ; ; 6 3 1 |
138 | 8 51 | decnncl | ⊢ ; 1 7 ∈ ℕ |
139 | 2 55 | deccl | ⊢ ; 3 7 ∈ ℕ0 |
140 | 2nn | ⊢ 2 ∈ ℕ | |
141 | eqid | ⊢ ; 3 7 = ; 3 7 | |
142 | 21 | dec0h | ⊢ 2 = ; 0 2 |
143 | 8 55 | deccl | ⊢ ; 1 7 ∈ ℕ0 |
144 | 8 21 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
145 | eqid | ⊢ ; 1 7 = ; 1 7 | |
146 | 144 | nn0cni | ⊢ ; 1 2 ∈ ℂ |
147 | 146 | addid2i | ⊢ ( 0 + ; 1 2 ) = ; 1 2 |
148 | 37 | mulid2i | ⊢ ( 1 · 3 ) = 3 |
149 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
150 | 148 149 | oveq12i | ⊢ ( ( 1 · 3 ) + ( 1 + 2 ) ) = ( 3 + 3 ) |
151 | 3p3e6 | ⊢ ( 3 + 3 ) = 6 | |
152 | 150 151 | eqtri | ⊢ ( ( 1 · 3 ) + ( 1 + 2 ) ) = 6 |
153 | 7t3e21 | ⊢ ( 7 · 3 ) = ; 2 1 | |
154 | 21 8 21 153 149 | decaddi | ⊢ ( ( 7 · 3 ) + 2 ) = ; 2 3 |
155 | 8 55 8 21 145 147 2 2 21 152 154 | decmac | ⊢ ( ( ; 1 7 · 3 ) + ( 0 + ; 1 2 ) ) = ; 6 3 |
156 | 83 | addid2i | ⊢ ( 0 + 5 ) = 5 |
157 | 93 156 | oveq12i | ⊢ ( ( 1 · 7 ) + ( 0 + 5 ) ) = ( 7 + 5 ) |
158 | 7p5e12 | ⊢ ( 7 + 5 ) = ; 1 2 | |
159 | 157 158 | eqtri | ⊢ ( ( 1 · 7 ) + ( 0 + 5 ) ) = ; 1 2 |
160 | 7t7e49 | ⊢ ( 7 · 7 ) = ; 4 9 | |
161 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
162 | 9p2e11 | ⊢ ( 9 + 2 ) = ; 1 1 | |
163 | 7 52 21 160 161 8 162 | decaddci | ⊢ ( ( 7 · 7 ) + 2 ) = ; 5 1 |
164 | 8 55 16 21 145 142 55 8 72 159 163 | decmac | ⊢ ( ( ; 1 7 · 7 ) + 2 ) = ; ; 1 2 1 |
165 | 2 55 16 21 141 142 143 8 144 155 164 | decma2c | ⊢ ( ( ; 1 7 · ; 3 7 ) + 2 ) = ; ; 6 3 1 |
166 | 2lt10 | ⊢ 2 < ; 1 0 | |
167 | 4 55 21 166 | declti | ⊢ 2 < ; 1 7 |
168 | 138 139 140 165 167 | ndvdsi | ⊢ ¬ ; 1 7 ∥ ; ; 6 3 1 |
169 | 9nn | ⊢ 9 ∈ ℕ | |
170 | 8 169 | decnncl | ⊢ ; 1 9 ∈ ℕ |
171 | 2 2 | deccl | ⊢ ; 3 3 ∈ ℕ0 |
172 | eqid | ⊢ ; 3 3 = ; 3 3 | |
173 | 8 52 | deccl | ⊢ ; 1 9 ∈ ℕ0 |
174 | eqid | ⊢ ; 1 9 = ; 1 9 | |
175 | 32 | addid2i | ⊢ ( 0 + 6 ) = 6 |
176 | 1 | dec0h | ⊢ 6 = ; 0 6 |
177 | 175 176 | eqtri | ⊢ ( 0 + 6 ) = ; 0 6 |
178 | 148 125 | oveq12i | ⊢ ( ( 1 · 3 ) + ( 0 + 3 ) ) = ( 3 + 3 ) |
179 | 178 151 | eqtri | ⊢ ( ( 1 · 3 ) + ( 0 + 3 ) ) = 6 |
180 | 9t3e27 | ⊢ ( 9 · 3 ) = ; 2 7 | |
181 | 7p6e13 | ⊢ ( 7 + 6 ) = ; 1 3 | |
182 | 21 55 1 180 121 2 181 | decaddci | ⊢ ( ( 9 · 3 ) + 6 ) = ; 3 3 |
183 | 8 52 16 1 174 177 2 2 2 179 182 | decmac | ⊢ ( ( ; 1 9 · 3 ) + ( 0 + 6 ) ) = ; 6 3 |
184 | 21 55 7 180 121 8 98 | decaddci | ⊢ ( ( 9 · 3 ) + 4 ) = ; 3 1 |
185 | 8 52 16 7 174 76 2 8 2 179 184 | decmac | ⊢ ( ( ; 1 9 · 3 ) + 4 ) = ; 6 1 |
186 | 2 2 16 7 172 76 173 8 1 183 185 | decma2c | ⊢ ( ( ; 1 9 · ; 3 3 ) + 4 ) = ; ; 6 3 1 |
187 | 4 52 7 102 | declti | ⊢ 4 < ; 1 9 |
188 | 170 171 74 186 187 | ndvdsi | ⊢ ¬ ; 1 9 ∥ ; ; 6 3 1 |
189 | 21 13 | decnncl | ⊢ ; 2 3 ∈ ℕ |
190 | 21 55 | deccl | ⊢ ; 2 7 ∈ ℕ0 |
191 | 10nn | ⊢ ; 1 0 ∈ ℕ | |
192 | eqid | ⊢ ; 2 7 = ; 2 7 | |
193 | eqid | ⊢ ; 1 0 = ; 1 0 | |
194 | 21 2 | deccl | ⊢ ; 2 3 ∈ ℕ0 |
195 | 8 1 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
196 | eqid | ⊢ ; 2 3 = ; 2 3 | |
197 | eqid | ⊢ ; 1 6 = ; 1 6 | |
198 | ax-1cn | ⊢ 1 ∈ ℂ | |
199 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
200 | 32 198 199 | addcomli | ⊢ ( 1 + 6 ) = 7 |
201 | 16 8 8 1 25 197 44 200 | decadd | ⊢ ( 1 + ; 1 6 ) = ; 1 7 |
202 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
203 | 202 115 | oveq12i | ⊢ ( ( 2 · 2 ) + ( 1 + 1 ) ) = ( 4 + 2 ) |
204 | 203 117 | eqtri | ⊢ ( ( 2 · 2 ) + ( 1 + 1 ) ) = 6 |
205 | 30 | oveq1i | ⊢ ( ( 3 · 2 ) + 7 ) = ( 6 + 7 ) |
206 | 58 32 181 | addcomli | ⊢ ( 6 + 7 ) = ; 1 3 |
207 | 205 206 | eqtri | ⊢ ( ( 3 · 2 ) + 7 ) = ; 1 3 |
208 | 21 2 8 55 196 201 21 2 8 204 207 | decmac | ⊢ ( ( ; 2 3 · 2 ) + ( 1 + ; 1 6 ) ) = ; 6 3 |
209 | 7t2e14 | ⊢ ( 7 · 2 ) = ; 1 4 | |
210 | 58 17 209 | mulcomli | ⊢ ( 2 · 7 ) = ; 1 4 |
211 | 8 7 21 210 117 | decaddi | ⊢ ( ( 2 · 7 ) + 2 ) = ; 1 6 |
212 | 58 37 153 | mulcomli | ⊢ ( 3 · 7 ) = ; 2 1 |
213 | 55 21 2 196 8 21 211 212 | decmul1c | ⊢ ( ; 2 3 · 7 ) = ; ; 1 6 1 |
214 | 213 | oveq1i | ⊢ ( ( ; 2 3 · 7 ) + 0 ) = ( ; ; 1 6 1 + 0 ) |
215 | 195 8 | deccl | ⊢ ; ; 1 6 1 ∈ ℕ0 |
216 | 215 | nn0cni | ⊢ ; ; 1 6 1 ∈ ℂ |
217 | 216 | addid1i | ⊢ ( ; ; 1 6 1 + 0 ) = ; ; 1 6 1 |
218 | 214 217 | eqtri | ⊢ ( ( ; 2 3 · 7 ) + 0 ) = ; ; 1 6 1 |
219 | 21 55 8 16 192 193 194 8 195 208 218 | decma2c | ⊢ ( ( ; 2 3 · ; 2 7 ) + ; 1 0 ) = ; ; 6 3 1 |
220 | 10pos | ⊢ 0 < ; 1 0 | |
221 | 1lt2 | ⊢ 1 < 2 | |
222 | 8 21 16 2 220 221 | decltc | ⊢ ; 1 0 < ; 2 3 |
223 | 189 190 191 219 222 | ndvdsi | ⊢ ¬ ; 2 3 ∥ ; ; 6 3 1 |
224 | 5 12 15 20 48 50 70 104 137 168 188 223 | prmlem2 | ⊢ ; ; 6 3 1 ∈ ℙ |